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Summary 

This document describes the algorithms used for generating the small-fire dataset for the 

three demonstrator areas selected in Sub-Sahara South Africa within the Fire_cci project. 

It includes the description of the Sentinel-1 C-band data pre-processing, as well as the 

ancillary data used to derive burned area over the tropical Africa. 
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1. Executive Summary 

This Algorithm Theoretical Basis Document (ATBD), corresponding to the SAR-O 

algorithm, describes the algorithm, methods, and approaches that lead to the generation 

of a small fire dataset for three 400x400 km areas of interest (AOI) in Africa. Test sites 

for algorithm development and calibration have been selected based on representative 

vegetation types (i.e., grasslands, crops and forests) that burn on a regular basis. The 

theoretical basis described here identifies the data sets used to classify burned area and 

the methods used to derive the cartographic products. Burned area mapping products 

derived from Sentinel-1/2 imagery were created for the three AOIs for the year 2019. The 

resulting maps will be independently validated using BA perimeters derived from 

multispectral optical datasets (e.g., Sentinel-2, Landsat-8, PLANET). 

2. Introduction 

2.1. Background 

The European Space Agency (ESA) Climate Change Initiative (CCI) initiative stresses 

the importance of providing a higher scientific visibility to data acquired by ESA sensors, 

especially in the context of the Intergovernmental Panel on Climate Change (IPCC) 

reports. This implies producing consistent time series of accurate Essential Climate 

Variables products, which can be used by the climate, atmospheric and ecosystem 

scientists. The importance of keeping long-term observations and the international links 

with other agencies currently generating ECV data is also stressed. 

Fires influence greenhouse gases budget, with a causal relationship between biomass 

burning and inter-annual variability of related emissions being observed (Simmonds et 

al. 2005). Worldwide, about 350 million hectares are affected by large fires (i.e., mapped 

from 500 m spatial resolution data) annually (Giglio et al. 2013), exerting a major 

influence on carbon release from terrestrial ecosystems (Andreae and Merlet 2001; 

Simmonds et al. 2005). Fires are also a major factor in land cover changes, and hence 

affect fluxes of energy and water to the atmosphere. In this context, spatial and temporal 

monitoring of burned areas can be inferred using remote sensing, a cost effective, 

objective, and time-saving method to monitor and quantify location, extent and intensity 

of fire events (Chuvieco 1999; Laneve et al. 2006; Stroppiana et al. 2003). The Fire 

Disturbance Essential Climate Variable (ECV) provides baseline products to allow such 

monitoring activities at global scales. 

This ECV identifies burned area (BA) as the primary fire variable. Accordingly, the 

Fire_cci project focuses on developing and validating algorithms to meet Global Climate 

Observing System (GCOS) ECV requirements for (consistent, stable, error-characterised) 

global satellite data products from multi-sensor data archives. Burned Area is defined as 

any vegetated area that has been completely or partially consumed by a fire, regardless of 

whether that fire was of human or natural origin, or whether that fire affected wildland 

areas or human managed territories (agricultural or pastures). 

BA can be combined with information on burn efficiency and available fuel load to 

estimate emissions of trace gases and aerosols. Measurements of BA may be used as 

direct input (driver) to climate and carbon cycle models or, when long time series of data 

are available, to parameterize climate-driven models for BA. Even though most 

destructive fires are large, small fires (<100 ha) may have a relevant contribution on 
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atmospheric emissions and carbon budgets (van der Werf et al. 2017). However, precise 

assessments of that contribution are not yet available. Model based studies estimated that 

small fires may account for 35% of global burned area (Randerson et al. 2012).  

Global BA products are based on coarse resolution sensors (from 250 to 1000m). Since 

coarse resolution burned area detection algorithms require that a substantial fraction of 

an individual pixel’s area undergo burning for successful attribution (to avoid 

commission errors from other forms of land cover change), detection of small fires 

becomes difficult. Therefore, the likelihood of detecting small burns (i.e. < 50ha) is low, 

and the products are frequently affected by omission errors (Giglio et al. 2009; Padilla et 

al. 2015), particularly coming from small fires (Kloster et al. 2012). To improve the 

characterization of small fires, the Fire_cci project generated a small fire database (SFD) 

based on medium resolution sensors (10 to 100m). Considering the massive processing 

effort when generating products at global level, the SFD was focused on the African 

continent (Roteta et al. 2019), the most burned worldwide (Chuvieco et al. 2016; Giglio 

et al. 2013), with additional areas being a posteriori selected over tropical South-east Asia 

(Lohberger et al. 2017) and South America (Belenguer-Plomer et al. 2019b).  

The aim of WP2100 (Fire_cci+ Phase 1) is to better understand the impact of different 

sensors for the detection of burned areas. The combined SAR-optical (SAR-O) BA 

algorithm was developed to seamlessly integrate information from different sensor types 

at pixel level. The algorithm integrates pixel-based approaches with object recognition 

and contextual information. The algorithm detects changes within optical indices and/or 

SAR backscatter coefficient between consecutive periods and relates them to burned 

areas by training a convolution neural network (CNN) (LeCun et al. 2015; Zhu et al. 

2017). The iterative multi-temporal analysis takes advantage of ancillary information on 

land cover and thermal anomalies (hotspots) to label the fire affected areas used for CNN 

training. 

2.2. Purpose of the document 

This document provides the description of the SAR-O algorithm together with 

preliminary validation results over five Military Grid Reference System (MGRS) tiles 

distributed worldwide. The document draws from the ATBDs already provided within 

Fire_cci Phase 2.  

2.3. Applicable Documents 

[RD-1] Bastarrika A., Roteta E. (2018) ESA CCI ECV Fire Disturbance: D2.1.2 

Algorithm Theoretical Basis Document-SFD, version 1.0. Available at: 

https://www.esa-fire-cci.org/documents 

[RD-2] M.A. Tanase, M.A. Belenguer-Plomer (2018) ESA CCI ECV Fire 

Disturbance: O3.D1 Algorithm Theoretical Basis Document – S1 South 

America, v2.0. Available at: https://www.esa-fire-cci.org/documents  

2.4. The SAR-Optical algorithm: general considerations  

The growing availability of medium resolution (10-50 m) optical sensors, such as 

Sentinel-2 Multispectral Instrument (MSI) and Landsat Operational Land Imager (OLI), 

has opened new opportunities to characterize the impact of small fires, although their use 

is limited by the persistent cloud cover in tropical regions. SAR data provide the means 

https://www.esa-fire-cci.org/documents
https://www.esa-fire-cci.org/documents
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to overcome the drawbacks of the optical sensors in areas with persistent cloud cover. 

Over the past decade, radar sensors have become of interest for tracking fire disturbance 

due to their independence of cloud cover and solar illumination (Bourgeau-Chavez et al. 

2002; Tanase et al. 2010). The standard derivative from radar data is the backscatter 

coefficient which provides an indication of the amount of returned energy that is scattered 

in a backward direction towards the sensor. A priori, the removal of vegetative material 

reduces the number of scattering elements and thus the total backscatter, as elements of a 

size similar with the wavelength constitute important sources for microwave scattering 

(Rignot and Zyl 1993).  

The combined use of optical and SAR sensors may reduce omission errors over areas 

with frequent cloud cover at the cost of making global processing computationally 

demanding. Indeed, despite the increasing processing power of cloud computing systems 

generation of continental BA products from Sentinel-2 sensors requires significant effort. 

Therefore, a combined SAR-Optical algorithm needs to efficiently integrate and use the 

two data types. Such efficiency may be achieved by dynamic inclusion of SAR datasets 

into the processing chains depending on pixel-wise availability of optical information 

over the selected detection period. Further, computational efficiency may be achieved by 

using state of the art algorithms such as deep leaning (DL). DL has been applied in many 

remote sensing-based studies over the last years and constitutes an efficient way of 

integrating multiple data sources. Among the deep learning methods, convolutional 

neural networks (CNN) are widely used in the remote sensing field and has been selected 

as the basis for the development of the optical-radar algorithm (Ban et al. 2020; Pinto et 

al. 2020). 

As with all change detection methods, it is essential to link the change in optical 

reflectance and/or backscatter coefficient to fire activity. Contextual information data 

may help reduce uncertainties by taking advantage of information from the temporal (e.g., 

higher fire probabilities for certain months) or spatial (e.g., burned area size, shape and 

distance to neighbours) domains. Furthermore, high resolution active fire products (e.g., 

Visible Infrared Imaging Radiometer Suite -VIIRS sensor, aboard the Suomi National 

Polar-orbiting Partnership – NASA (NPP) satellite may be linked to changed patches 

based on location and acquisition time and thus provide additional means when 

identifying areas affected by relatively small fires. 

3. Data 

3.1. Sentinel-1 system and data products 

Sentinel-1 is a two-satellite constellation (A - since April 2014, B - since April 2016) with 

the prime objectives of Land and Ocean monitoring (Table 1). The satellites carry a C-

band SAR sensor, which offers medium and high-resolution imaging in all weather 

conditions making it useful for land monitoring. The radar operates in two main modes, 

with the Interferometric Wide (IW) swath (250 km width) being the default operation 

mode over land. The IW mode images three sub-swathes using the Terrain Observation 

with Progressive Scans SAR (TOPSAR) to provide high quality, homogeneous images. 

The advantages of Sentinel-1 sensor over other C-band SAR missions, besides the free 

data access policy, are three-fold: i) high temporal frequency (6 days exact repeat cycle 

with two satellites), ii) high spatial resolution (5 m in azimuth and 20 m in range) and, iii) 

dual-polarization (VV and VH).  
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Sentinel-1 products are released in two Level 1 formats, Ground Range Detected (GRD) 

and Single Look Complex (SLC). GRD products are projected, intensity images, 

radiometrically and terrain corrected. SLC data are designed for interferometric 

applications, containing both phase and intensity information.  

The SAR-O algorithm uses the systematically distributed Level-1 Ground Range 

Detected, focused data that has been detected, multi-looked and projected to ground range 

using an Earth ellipsoid model. Pixel values represent detected magnitude (i.e., no phase 

information). The ellipsoid projection of the GRD products is corrected using the terrain 

height (as specified in the product general annotation) which varies in azimuth but is 

constant in range. The products are delivered as GeoTiffs together with ancillary files 

containing information about orbit, noise and calibration. 

Table 1: Main characteristics of the Sentinel-1 satellite sensor. 

Mission and 

instrument 

Characteristics 

Sentinel-1 

(A/B) 

Orbit: near-polar, sun-synchronous, 180° orbit phasing between A and B 

Repeat-pass: 12 days per satellite.  

Combined A/B satellite passes: 6 days.  

Combined A/B satellites Ascending/Descending passes: 3 days. 

Instrument: C-band (5.3 GHz) synthetic aperture radar 

Acquisition modes:  

Strip map (SM) – on demand 

Extra Wide Swath (EW) – basic operation mode over sea/ocean 

Interferometric Wide Swath (IW) – basic operation mode over land  

Spatial resolution (IW): range: 5 m / azimuth: 20 m 

Swath width (IW): 250 km 

3.2. Sentinel-2 system and data products 

The data used for the SAR-O algorithm are Sentinel-2 MSI Level-1C product, which 

contains Top-of-atmosphere reflectance projected in UTM WGS84 system. Bottom-of-

atmosphere reflectance and a Scene Classification (SCL) were generated using the ESA 

toolbox. The Sentinel-2 mission allows a high revisit frequency (5 days at the equator 

with the Sentinel 2A and 2B satellites). The MSI sensor provides a unique combination 

of high spatial resolution (which varies from 10 m to 60 m), wide field of view (290 km) 

and spectral coverage, with 13 spectral bands spanning from the visible and the near 

infrared to the short-wave infrared (Table 2). 

Table 2: Band characteristics of the Sentinel-2 MSI 

MSI Band Number Centre Wavelength (nm) Bandwidth (nm) Resolution (m) 

1 443 20 60 

2 490 65 10 

3 560 35 10 

4 665 30 10 

5 705 15 20 

6 740 15 20 

7 783 20 20 

8 842 115 10 

8a 865 20 20 
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MSI Band Number Centre Wavelength (nm) Bandwidth (nm) Resolution (m) 

9 945 20 60 

10 1380 30 60 

11 1610 90 20 

12 2190 180 20 

3.3. Ancillary datasets 

The main ancillary datasets used for BA algorithm development and calibration are 

Landsat 8 imagery (used to derive reference burned perimeters) and the thermal 

anomalies (hotspots) detected by the Visible Infrared Imaging Radiometer Suite (VIIRS) 

and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, the 

ESA CCI Land cover v2.0.7 dataset (ESA 2017) at 300 m spatial resolution is used to 

provide information on land cover types and non-burnable areas (e.g., water bodies).  

3.3.1. Landsat-8 data products  

For back-comparability, the SAR-O algorithm development was processed over 10 

MGRS tiles used during cal/val activities of the SAR-based Reed-Xiaoli detector (RXD) 

in Fire_cci Phase 2 (Belenguer-Plomer et al. 2019b). Landsat-8 images were used to 

generate reference burned areas perimeters due to the limited availability of Sentinel-2 

imagery at the time. 

Landsat-8 was launched on February 2013 as a combined effort of NASA and the United 

States Geological Survey (USGS). Landsat-8 ensures the continued acquisition and 

availability of Landsat data. It carries two observation sensors, the OLI and the Thermal 

InfraRed Sensor (TIRS) collecting data in nine shortwave bands and two longwave 

thermal bands (Table 3 and Figure 1). Landsat-8 Pre-Collection1 products were used 

when generating the reference burned area maps for algorithm development and 

calibration sites.  

Table 3: Landsat 8 OLI and TIRS bands description 

Bands Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 – Blue 0.45 - 0.51 30 

Band 3 – Green 0.53 - 0.59 30 

Band 4 – Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 – Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2  11.50 - 12.51 100 * (30) 

 

                                                 
1 In 2016, the USGS began making changes to manage the Landsat archive as a tiered Collection of Landsat 

data. Since October 2017 Landsat Pre-Collection data are no longer available. 

https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/United_States_Geological_Survey
https://en.wikipedia.org/wiki/United_States_Geological_Survey
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Figure 1: Comparison of Landsat and Sentinel 2 spectral bands (source: NASA) 

3.3.2. Active fire products 

The SAR-O BA detection algorithm uses active fire products to attribute changes in 

surface reflectance and backscatter to fire affected areas. The hotspots detected by the 

VIIRS sensor, onboard the Suomi-NPP satellite (375 m product) seem the most adequate 

over the areas selected for algorithm development due to its better spatial resolution and 

a greater response over fires of relatively small areas. Although the MODIS-acquired 

thermal anomalies were of significant less quality over the selected areas they are used to 

complement the VIIRS ones. Therefore, vector files of VIIRS and MODIS hotspots 

downloadable from the Archive Download Tool (https://firms.modaps.eosdis. 

nasa.gov/download/) are used during various stages of the algorithm. One should notice 

that VIIRS hotspots are affected by errors which are currently being solved by the Fire 

Information for Resource Management System (FIRMS) team. 

3.3.3. Other datasets 

The ESA CCI Land cover dataset (300 m spatial resolution) was used to provide 

information on non-burnable areas (e.g., water bodies) and drive the BA detection and 

mapping algorithm as a function of land cover type. The land cover CCI product (LC_cci) 

is an annual series of global land cover maps at 300 m spatial resolution, covering the 

1992-2015 period. The maps were produced using a multi-year and multi-sensor strategy 

to make use of all suitable data and maximize product consistency. The most recent ESA 

land cover map (i.e., 2015) was used. To account for the different spatial resolution, this 

layer was resampled to 40 m, i.e. the spatial resolution used for burned area detection and 

mapping. 

The Shuttle Radar Topography Mission DEM (SRTM DEM) provides the reference for 

SAR data geocoding. The NASA SRTM provides digital elevation information over 80% 

of the globe. The data is distributed by USGS and is available for download from the 

National Map Seamless Data Distribution System or the USGS ftp site. The SRTM DEM 

was derived from single pass SAR interferometric data acquired in 2000. For algorithm 

development and satellite data processing the enhanced DEM is used. The enhanced DEM 

was released worldwide in 2016 at 1 arc-seconds resolution (30 m at equator) in 1⁰ tiles. 

  

https://firms.modaps.eosdis/
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4. Methods 

4.1. Site selection for algorithm development and preliminary validation 

Ten areas were selected for algorithm development and preliminary validation2 (Table 4 

and Figure 2) considering: i) the fire activity (from active fire products, i.e., hotspots), ii) 

the main types of land cover iii) the availability of cloud-free Landsat 8 data. Once the 

areas for algorithm development and preliminary validation were chosen, burned area 

perimeters were generated for the 2015-2016 fire seasons, Sentinel-1/2 data were 

processed, and the BA algorithm was developed, calibrated, and a preliminary validation 

was carried out. 

Table 4:  Landsat 8 and Sentinel-1/2 data used for algorithm development and preliminary 

validation 

MGRS Reference period MGRS Reference period 

10SEH 04/10/17–05/11/17 29TNG 05/10/17–06/11/17 

10UEC 05/07/17–22/08/17 33NTG 28/11/15–16/02/16 

20LQP 20/07/16–22/09/16 36NXP 30/12/16–15/01/17 

20LQQ 04/07/16–22/09/16 50JML 07/03/17–10/05/17 

29TNE 05/10/17–06/11/17 52LCH 05/04/17–21/04/17 

 

 

Figure 2:  Areas selected for algorithm development and preliminary validation. Terrestrial eco-

regions are also shown. 

4.2. Sentinel-1 pre-processing  

A Sentinel-1 pre-processing chain based on the Orfeo ToolBox (OTB)3 was selected as it 

provides for a platform-independent, open source pre-processing solution. The OTB 

chain was developed by the Centre for the Study of the Biosphere from Space (CESBIO) 

                                                 
2 The validation of the BA products over the three AOIs will be carried out independently. 

3 OTB is developed by the National Centre for Space Studies (CNES), France 
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as an operational tool for Sentinel-1 GRD data tiling and processing per the 100 km 

MGRS used by the Sentinel-2 processing system. The chain is highly scalable 

(multithreading/multiprocessor) and autonomous once few parameters are set. The chain 

also deals with data download from the PEPS (Plateforme d’Exploitation des Produits 

Sentinel) repository that mirrors ESA’s Scihub. Alternatively, ESA’s Sentinels hub or 

Copernicus Data and Information Access Services (DIAS) platforms may be used for data 

download. S1-OTB processing may be grouped in several steps: pre-processing, geo-

reference, and multi-temporal filtering (Figure 3). 

 

 
Figure 3: Flowchart for SAR data processing with Orfeo Toolbox 

The pre-processing steps include data download (ascending and descending passes) for 

the specified MGRS tiles, calibration to gamma nought, and multi-look to the desired 

spatial resolution. The geocoding steps include orthorectification to the desired spatial 

resolution, subset of Sentinel-1 data to the current processing tile as well as slice assembly 

for data acquired from the same orbital path but provided within different slices. The last 

step of the OTB chain is multi-temporal filtering of the products according to satellite 

pass. Notice that OTB pre-processing chain setup provides images at 20 m spatial 

resolution. To further reduce speckle and, more importantly, the BA algorithm processing 

time, the temporally filtered Sentinel-1 images are resampled (i.e. aggregated) to 40 m 

spatial resolution. 

4.3. Sentinel-2 pre-processing 

The ESA’s atmospheric correction algorithm sen2cor (v.2.4.0) was used to derive bottom 

of atmosphere (BOA) Sentinel-2 images and correct for topographic effects on surface 

reflectance. The bi-cubic interpolation was subsequently used to resample the 20m 

Sentinel-2 images to the pre-processed Sentinel-1 output resolution of 40m. 

To reduce the number of cloud-affected pixels, temporal composites were generated using 

both Sentinel-2 A and B images. The sen2cor-based SCL was considered when 

generating such composites for a given reference date (i.e., pre- or post-fire). Pixels 

affected by clouds or shadows were gap filled using data from Sentinel-2 imagery 

acquired at the closest date. Gap filling considered a period of up to 30 days from the 

reference date. Depending on the reference date, pre-fire or post-fire, the temporal pixel 

filling was carried using images acquired before or after the reference, respectively 

(Figure 4). 
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Figure 4: Central wavelength (nm) by bands number of the MSI onboard Sentinel-2 A and B, and 

Graphical representation of temporal composite formation 

Along with surface reflectance for each of the two temporal composites (pre- and post-

fire), the following indices were computed and used for BA detection and mapping: NBR, 

NDVI, NDWI and MIRBI. 

NBR = (B8a - B12) / (B8a + B12)        (1) 

NDVI = (B8a - B05) / (B8a + B05)        (2) 

NDWI = (B8a - B11) / (B8a + B11)       (3) 

MIRBI = 10 x B12 – 9.8 x B11 + 2        (4) 

where: B- stands for the band number of Sentinel 2 sensors 

4.4. SAR-optical data integration 

The burned area detection and mapping algorithm uses time series of Sentinel-1/2 

imagery collected with a reasonably short time gap between them. The algorithm is 

sensitive to the timing of images acquired at t-1 and t+1 which need to be spaced 

reasonably (< 30 days) as recovering vegetation may obscure the burn signal. Detection 

and classification are carried out on consecutive acquisition dates for which Sentinel-1 

and 2 imagery need to be combined. The SAR-optical data integration is carried out by 

stacking consecutive pre-fire (t-1) and post fire (t+1) dates of radar-derived metrics with 

temporal composites of optical-derived Sentinel-2 metrics (spectral bands). As Sentinel-

1 and Sentinel-2 acquisition dates may not coincide, the Sentinel-1 dates are always 

selected as the detection period due to their complete spatial coverage (e.g., no missing 

pixels due to cloud cover). Sentinel-2 images are then matched to the Sentinel-1 dates for 

the current detection period as follows: i) for the pre-fire date, the closest Sentinel-2 image 
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acquired before (if no coincident image is available) is selected as t-1 date and, ii) for the 

post-fire date, the closest image acquired after (if no coincident image is available 

coincident) is selected as t+1 date. Once the Sentinel-2 interval is ‘matched’ with the 

Sentinel-1detection interval, the temporal composite process (see Section 4.3) kicks in 

and cloud related gaps are filled in. 

The input pairs of Sentinel-1 metrics and Sentinel-2 image composites for the current 

detection period are subsequently fed into the classification algorithm and optical indices 

are derived (see Section 4.3).  

4.5. Reference burned perimeters and validation  

The reference burned perimeters extraction for validation purposes was based on a well-

established framework (Padilla et al. 2014; Padilla et al. 2015; Padilla et al. 2017). The 

reference data were obtained from Landsat-8 images using a random forest (RF) classifier 

and training polygons selected by an independent operator. The validation perimeters 

were generated from multi-temporal pairs of images with a maximum separation of 32 

days. The temporal separation of the pairs was short to ensure that fire scars were clearly 

visible in the post-fire image. Before running the classification, clouds were removed 

using the pixel quality band of the Landsat product and each pair of images was clipped 

to the extent of its corresponding MGRS tile. Training areas were selected using a false 

colour composite (RGB: SWIR, NIR, R) that allowed for a clear discrimination of burned 

areas. Three training classes were considered: burned, unburned and no data. 

The variables selected as input for the RF classifier were: (i) Landsat-8 bands 5 and 7; (ii) 

the Normalized Burn Ratio (NBR); and (iii) the temporal difference between the pre- and 

post-fire NBR values (dNBR). The NBR (5) is defined as the normalized difference 

between the reflectance of NIR and SWIR wavelengths (Key and Benson 2006; López-

García and Caselles 1991). 

NBR = (NIR − SWIR)/(NIR + SWIR)       (5) 

where near infra-red (NIR) has a wavelength of 0.85–0.88 μm and shortwave infra-red 

(SWIR) has a wavelength of 2.11–2.29 μm. 

After the RF classification, fire perimeters were visually revised to correct possible errors. 

New training fields were iteratively added, and the RF was re-run until the classification 

results were deemed accurate. Reference BA perimeters were resized using a nearest-

neighbour interpolation to the selected pixel spacing of the Sentinel-1 product (40 m). 

Temporal gaps between the Landsat-8 reference period and the Sentinel-1 detection 

period were filled in by photointerpretation of Sentinel-2 images. 

Confusion matrices were used to validate the burned area maps (Table 5). The Dice 

coefficient (6), omission errors (7), and commission errors (8), were used to assess the 

quality of the mapping products obtained within different CNN configurations. For global 

climate modelling needs, BA products should have commission errors (CE) in the range 

of 4% (ideal) to 17 % (maximum), with omission errors (OE) above 19% deemed less 

useful for the modelling efforts (Mouillot et al. 2014).  
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Table 5: Confusion matrix (example) 

 

DC = 2P11 / (P1+ +P+1)         (6) 

OE = P21 / P+1          (7) 

CE = P12 / P1+          (8) 

4.6. Burned area mapping 

The burned area mapping algorithm identifies changes in C-band backscatter and surface 

reflectance associated with burning events. The algorithm considers i) multi-temporal 

changes of incoherent SAR-based metrics (VV and VH backscatter coefficients and their 

ratio VH/VV) and ii) changes in surface reflectance (individual bands and derived indices.  

For algorithm training, ancillary information on thermal anomalies (hotspots) and land 

cover are also used. 

4.6.1. Convolutional Neural Networks (CNN) - background 

Deep learning methods are increasingly applied to remote sensing problems (Zhu et al. 

2017) with convolutional neural networks (CNN) being widely used in land cover 

classification, the retrieval of bio-geophysical variables (Ma et al. 2019) or burned area 

detection and classification (Ban et al. 2020; Pinto et al. 2020). CNN are often structured 

by more than two stacked stages of convolution, non-linearity and pooling, followed by 

at least one fully connected layer (LeCun et al. 2015; Zhu et al. 2017). Each convolutional 

layer carries out a spatial-spectral feature extraction (Zhong et al. 2019), generating a set 

of new filtered data where visual and signal patterns such as edges are emphasized (Strigl 

et al. 2010). From the convoluted filtered data, each neuron takes a vector and applies an 

activation function of a weighted linear summation (9) (Maggiori et al. 2016). 

 

a = f (wx + b)          (9) 

 

where: a is the neuron output, w is the weight given to the vector x, b is the bias value, 

and f is the activation function which introduces non-linearity into the network and 

permits learning complex features from data (Agostinelli et al. 2014; Saha et al. 2019). 

The most common activation function in remote sensing applications is the rectified linear 

unit (ReLU) (Nair and Hinton 2010), which activates values greater or equal than zero, 

while it converts the rest to zero (10). 

 

         (10) 
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A loss function is used to quantify the errors when classifying a training vector data, 

comparing the CNN-based prediction with the label of such vector (Maggiori et al. 2016). 

The weights and biases of each neuron are adjusted using backpropagation during the 

network training, carrying out multiple iterations forward and backward (Anantrasirichai 

et al. 2019) to minimize the errors via gradient descent (Schmidhuber 2015). The 

activated data is sub-sampled often to reduce the tensor size, which increases the receptor 

field to the next convolutional layer of the network (Kellenberger et al. 2018; Strigl et al. 

2010). The last layer of the network oversees the classification instead of the feature 

extraction. Thus, a fully connected neural network layer is used. Usually, such a fully 

connected network is followed by a softmax layer, which models the input data to the 

probability of belonging to each considered class (Anantrasirichai et al. 2019; Zhang et 

al. 2018). 

4.6.2. Selection of training data 

CNN is a supervised learning method and thus it needs sample data (burned and unburned 

pixels) for algorithm training. The extraction of the training dataset takes advantage of 

hotspots (active fire events) derived from thermal sensors (i.e., VIIRS and MODIS) which 

provide both algorithm autonomy and results replicability (i.e., avoids operator 

interpretation of burned/unburned areas). The use of hotspots, well established for burned 

area mapping (Belenguer-Plomer et al. 2019b; Roteta et al. 2019), is essential particularly 

when using the radar derived metrics to differentiate changes due to fires (Huang and 

Siegert 2006). Burned training pixels were selected within a spatial buffer determined as 

the double of the thermal sensor spatial resolution (Langner et al. 2007; Sitanggang et al. 

2013). The unburned training pixels were those outside the hotspot buffer areas as well 

as from not burnable (e.g. water) land cover classes according to CCI land cover map 

reference.  

4.6.3. Assessment of optimum CNN configuration for BA mapping 

The parameters that define a CNN model such as the number of layers, neurons and filters 

for each dataset need to be adjusted (Bashiri and Geranmayeh 2011). To determine the 

optimal network for BA detection and mapping, eight combinations (Table 6) were 

analysed as a function of network complexity (i.e., number of hidden layers), 

dimensionality of feature extraction (i.e., spatial or spectral) and data normalization (i.e., 

0-1 or z-score). The generated CNNs were based on AlexNet (Krizhevsky et al. 2012), 

integrating convolutional hidden layers, the ReLU activation function, max-pooling, fully 

connected layers, dropout and softmax classification. Four architectures were analysed 

after combining two CNN-groups that differed in terms of (i) the number of hidden layers 

and filters, and (ii) the image domain (i.e., spatial or spectral) where the convolutional 

feature extraction was executed over the input data.  

 

The first group included two CNN models with a different number of hidden layers and 

filters. The first model had two hidden layers with 32 and 64 filters, respectively, whereas 

the second model had a third additional hidden layer where 128 filters were applied. 

Hereafter the models with two and three hidden layers are referred to as the simple (S) 

and the complex (C), respectively. The second group involved two convolution-based 

filters for feature extraction. The first filter implies convolution over the spectral domain, 

considering one dimension as defined by the number of image-bands (1D). The second 

filter used the spatial domain at each image-band which implies two dimensions (2D) 

through the rows and columns (Kussul et al. 2017; Xu et al. 2017) (see Figure 5). 
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Figure 5: Configuration of 1D (left) and 2D (right) CNNs (Belenguer-Plomer et al., in preparation) 

 

Two normalization methods were tested separately with each image band being 

normalized (i) in the interval [0,1] (Benedetti et al. 2018) and (ii) applying the z-score 

normalization (Zhong et al. 2017) (11). 

 

                   (11) 
 

where: x is a given pixel of a band b of the image, and µand σ are the mean and standard 

deviation, respectively. Thus, in Table 6 there are the eight configurations considered 

whose performance when mapping BA is going to be assessed in this study for each 

dataset (i.e., SAR, optical and SAR-optical combination). 

Table 6: The eight configurations assessed for each input dataset (S – simple, C – complex). 

CNN model Convolution dimension Data normalization 

S 1D z-score 

S 1D 0-1 

S 2D z-score 

S 2D 0-1 

C 1D z-score 

C 1D 0-1 

C 2D z-score 

C 2D 0-1 

 

The utility of land cover specific CNN training was also considered as it may affect 

burned area mapping, particularly when using radar datasets (Belenguer-Plomer et al. 

2019a; Belenguer-Plomer et al. 2018; Boschetti et al. 2004; Padilla et al. 2015).  

4.7. Preliminary results and significance for BA mapping algorithm 

development 

The next sub-sections provide an overview of the BA algorithm configuration as a 

function of the analysis carried out to determine the optimum CNN configuration as well 

as the integration of SAR and optical data within a seamless mapping algorithm. Three 

CNN algorithms were trained and analysed: SAR based (S-1), optical based (S-2) and 

SAR and optical (S-1 + S-2). The latter algorithm was based on feeding both radar- and 

optical-derived metrics (e.g. backscatter coefficient, surface reflectance, indices) into the 

CNN training. 
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4.7.1. Optimum CNN configuration  

Depending on the MGRS tile, the optimum CNN configuration varied (Figure 6). When 

Sentinel-1 (S1) data was fed into the CNN, accuracy metrics of dispersion (i.e., between 

tiles) at any CNN configuration were larger than when compared to feeding Sentinel-2 

(S2) data or both Sentinel-1 and Sentinel-2 data (S1+S2). For the radar-fed CNN (S1) 

inter-tiles accuracy dispersion was reduced when the convolution and feature extraction 

was carried out through the spatial domain of the image (2D) by decreasing omission 

errors (36NXP, 20LQQ and 50JML) despite a slight increase in commission errors for 

some tiles (10UEC and 29TNE). Similar results were achieved when using only Sentinel-

2 data. When feeding both types of data (S1+S2) into the CNN, the convolution 

dimension (i.e., 1D, 2D) did not influence algorithm accuracy. In addition, the time 

required when training 2D models was lower compared to 1D, particularly when 

considering complex (C) networks and regardless of data normalization type. The use of 

more complex (C) CNN models, as opposed to using the simplest ones (S), did not result 

in increased accuracy, regardless of the type of data fed into the algorithm. Similarly, 

computing time differences as a result of different data normalization method (z-score vs 

0 to 1 values) were marginal for any of the input data. However, marginal increments in 

accuracy where observed when using the z-score normalization for the Sentinel-1 fed 

algorithm, particularly in tile 50JML (Australian grasslands) where OE where reduce 

significantly (for 2D CNN). Conversely, when feeding Sentinel-2 or Sentinel-1 and -2 

data, the 0 to 1 normalization provided slightly more accurate BA detections. 
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Figure 6: Dice coefficient (DC), commission and omission errors (CE and OE) by calibration tiles 

when training different CNN configuration and input data. 

The results show that more complex networks are not adequate when mapping BA from 

either SAR, optical or both datasets since training is more computationally intensive but 

BA accuracy does not improve. However, convolution dimensionality and data 

normalization warrant further investigation as their effect changes with the studied area, 

i.e., vegetation type and fire regimes (Figure 7).  
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Figure 7: Mean and standard error of Dice coefficient (DC), commission and omission errors (CE 

and OE) by land cover classes when training different CNN configuration and input data. O: other. 

F: forest. S: shrubland. G: grassland. C: cropland. 

By land cover classes, the lowest BA mapping accuracy was observed for Grasslands, 

particularly when using Sentinel-1 data due to high omission errors. However, combining 

2D convolution with z-score normalization resulted in improving the DC by 59% from 

1D convolution-based approaches with z-score (DC 0.35±0.24 vs 0.22±0.2, being ± the 

standard deviation). The same configuration (2D and z-score) also improved the accuracy 

over Crops, especially when compared to 1D with 0-1 data normalization (DC 0.37±0.14 

vs 0.30±0.25), although to a lesser extent, while over Forests the improvement was 

marginal. Accuracy metrics were stable for Shrubs over all configurations tested, 

although the 2D and z-score configuration provided less overall dispersion among the 

analysed tiles. For the remaining land cover types, included in class Others, the highest 

mapping accuracy was achieved using the convolution in spectral domain (1D). 

Although S-2 fed CNN achieved better accuracies when compared to S-1 fed CNN, such 

improvements were also conditioned by land cover classes and configurations. When 

using optical data, the most accurate dimension for convolution was the spectral one (1D) 

except for Crops where the spatial convolution (2D) provided improved results. Marginal 

differences in BA accuracy were found between the two data normalization types with 

the z-score normalization providing higher DC values over all land cover classes except 

for Forests.  
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When both, Sentinel-1 and Sentinel-2 data were fed to the CNN algorithm the BA 

classification did not improved when compared to only using Sentinel-2 data except for 

Crops. Over cropping areas, SAR or optical data alone provided low mapping accuracies 

(highest DCs achieved 0.37±0.14 and 0.42±0.05, respectively). However, combining the 

two sensor types (S1+S2) improved the mapping accuracy (DC 0.44±0.09) by reducing 

OE. Such an improvement was maximum for the 2D convolution and z-score 

normalization. For the remaining land cover classes, mixing SAR and optical data seem 

not necessary when cloud cover is not an issue. As for the CNN optimum configuration, 

1D convolution and 0 to 1 normalization provided improved mapping accuracies as for 

S-1 based algorithm.  

The highest mapping accuracy was observed for Forests regardless of data normalization 

method, convolution dimensionality and input remote sensing data (S-1, S-2, S1+S2). 

The optimum CNN configuration for each land cover class is presented in Table 7 as a 

function of the input remote sensing data. 

Table 7: Optimum CNN configuration and the average Dice Coefficient of the calibration tiles (DC 

± standard deviation) achieved by land cover class and input data 

 

 

The layer of the CNNs (softmax) predicts the probability of each pixel to belong to burned 

and unburned classes, and thus results into mapped burned and unburned categories. All 

previous analyses assigned a pixel as burned when the softmax probability was above 

50%. However, such a fixed threshold may not always provide optimum results 

depending on the input datasets and land cover class (Figure 8).  

 

 

Figure 8: Variation of mapping accuracy as a function of changes in softmax probability by land 

cover class and input data sets 

To improve BA mapping accuracy and balanced CE and OE the effect of a using a 

variable threshold probability was studied. Such variation depended on land cover class 

and the input data fed to the CNN algorithm. Over Grasslands, Crops and Shrubs, the 

classes with the highest OE, improved accuracies where observed when the softmax 
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probability was reduced (40 to 50%) with its extent depending on the input dataset. The 

best trade-off between CE and OE was provided by thresholds of 45% and 40% over 

Shrubs and respectively Grasslands, when using S1+S2 data. When S1 or S2 data were 

used separately a 45% threshold was optimum over Crops and Grasslands. Conversely, 

for Forests class a more restrictive threshold improved BA mapping accuracy. The 

optimum threshold differed with the input data, from 65% when using S1 or S2 data alone 

to 75% when integrating SAR and optical data (S1+S2). For class Others the BA accuracy 

improved marginally when varying the threshold until a probability of 80% for S1 and 

70% for S2. However, when using S1+S2 the improvement was considerable with within 

the 55-75% interval with the highest accuracy being achieved for a softmax of 70%. Such 

improvement allowed S1+S2 based detection achieving higher accuracies when 

compared to separate S1 or S2 detection. Past the optimum threshold, mapping accuracy 

reduces considerably, particularly when using S2 data. This effect was observed for all 

land cover classes except Grasslands, where the opposite was true.  

4.7.2. SAR-optical mapping strategy 

BA mapping accuracy was comparatively analysed by land cover class for three different 

strategies of combining SAR and optical datasets: (a) stacking radar and optical metrics 

(e.g., backscatter coefficient, surface reflectance, indices) and feed them to the CNN 

algorithm; (b) using BA detected from the optical data and filling the gaps (e.g., due to 

cloud cover) with pixels mapped from radar data and; (c) joining BA detected by either 

radar or the optical-based algorithms (Figure 9).  

Over Forests, the three mapping strategies provided similar results (i.e., DC values). 

However, joining individual S-1 and S-2 detections may provide an advantage by 

reducing areas not detected due to clouds or shadows. For Shrubs the observed DC values 

were similar for all mapping strategies with radar-filled optical-based BA maps showing 

slightly higher DCs when compared to the remaining two strategies. Over Grasslands the 

radar-filled optical-based BA maps, provided more accurate results when compared to 

the remaining ones.  

Over the two remaining land cover classes (i.e., Others, Crops), the use of radar-optical 

stacks into the CNN allowed for improved accuracies when compared to using radar or 

optical data separately and combining the result. In particular, for class Others the radar-

optical stacks allowed for reduced CE (20% less).   
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Figure 9: Mean and standard error of Dice coefficient (DC), commission and omission errors (CE 

and OE) by land cover classes when combining Sentinel-1 and -2 applying four different 

approaches, being a - a SAR and optical data integration before the CNN based classification; b – 

the Sentinel-2 BA based maps pixels affected by no data pixels were filled using BA from Sentinel-

1; and c - a SAR and optical integration of all burned pixels. 

4.8. Preliminary algorithm validation 

The optimum CNN configuration and mapping strategy, as observed over the calibration 

tiles, was assessed over the validation tiles (Table 8) with the mapping accuracy varying 

depending on the input data (i.e., S-1, S-2 and S-1+S-2). Higher mapping errors (DC<0.6) 

were observed over grassland dominated tiles in Africa and Australia (33NTG and 

52LCH, respectively), regardless of the input data. Over the remaining tiles, DC values 

were above 0.7. Over two tiles (20LQP and 33NTG), the radar-based maps where more 

accurate when compared to the optical based maps (DC of 0.81 vs 0.71 and 0.50 vs 0.46) 

with the opposite being valid for the remaining three tiles. However, the use of Sentinel-

1 data (cloud cover independent) allowed for wall to wall mapping (marginal percentages 

of unobserved pixels at image borders). In tile 52LCH the optical-based maps did not 

provide information for 21.5% when compared to 0.3% when using the radar data (Figure 

10). 

By land cover type (Figure 11), the highest accuracy was observed over forested areas 

when mapping BA through the SAR-optical combination (DC 0.72) as opposed to only 

using SAR (DC 0.63) or optical (DC 0.66) information (Figure 11). The most relevant 

improvement was combining S-1 and S-2 was found over class Others where the synergy 

of both sensors reduced considerably OE and CE when compared to the single sensor 

approaches. Over the remaining land cover classes, the radar-optical approach provided 

the lowest OE, particularly when compared to the SAR-based maps. The CE values of 

the radar-optical combination were equal or marginally higher when compared to maps 

derived from Sentinel-2 optical data. Finally, the lowest accuracy was achieved over the 

Crops, mainly due to unusually high CE (near of 0.8) observed for both sensor types when 

compared to the other land cover types. In addition, for the radar-based maps, BA 
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accuracy over cropping areas was also negatively influenced by high OE, which did not 

occur when using optical datasets.  

The optimum combination of Sentinel-1 and Sentinel-2 data generally improved or 

maintained the accuracy achieved from maps based on SAR or optical data separately 

except for tile 20LQP, where the SAR-based maps achieved the highest. Improvements 

when combining the two sensor types where related to a considerable reduction in OE 

coupled with marginal increase in CE. The average OE reduction and CE increase over 

the five validation tiles was 0.22±0.22 and 0.05±0.17 when compared to radar-based 

maps and 0.09±0.08 and 0.05±0.05 when compared to optical-based maps. Apart from 

accuracy improvements, using both optical and radar data reduced gaps due to cloud 

cover to almost non-existent, a major advantage of combining active and passive sensors.  

Although computationally intensive, a combined SAR-optical approach takes advantage 

of the optical sensor improved BA mapping accuracy and the radar atmospheric 

independence to provide consistent, wall to wall products.  

Table 8: Error metrics for Sentinel-1 burned area detections for each MGRS tile analysed 
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Figure 10: BA mapping from active (S1), passive (S2) and active-passive (S1+S2) sensors 

 

 

Figure 11: BA mapping accuracy for the validating tiles as a function of the sensor used 
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Annex 1: Acronyms and abbreviations 

AOI Area Of Interest 

ATBD Algorithm Theoretical Basis 

Document 

BA Burned Area 

BOA Bottom of atmosphere 

CCI Climate Change Initiative 

CE Commission Error 

CESBI

O 

Centre for the Study of the 

Biosphere from Space 

CNES France National Centre for 

Space Studies 

CNN Convolution neural networks 

DC Dice Coefficient 

DEM Digital Elevation Model 

DIAS Data and Information Access 

Services 

DL Deep Learning 

ECV Essential Climate Variables 

ESA European Space Agency 

EW Extra Wide swath mode 

FIRMS Fire Information for Resource 

Management System 

GCOS Global Climate Observing 

System 

GRD Ground Range Detected 

IPCC Intergovernmental Panel on 

Climate Change 

IW Interferometric Wide swath 

mode 

LC Land Cover 

MGRS Military Grid Reference System 

MIRBI Mid-InfraRed Burnt Index 

MODIS Moderate-Resolution Imaging 

Spectroradiometer  

MSI Multi Spectral Instrument 

NASA National Aeronautics and Space 

Agency 

NBR Normalized Burn Ratio 

NDVI Normalized Difference 

Vegetation Index 

NDWI Normalized Difference Water 

Index 

NIR Near InfraRed 

OE Omission Error 

OLI Operational Land Imager 

OTB Orfeo ToolBox 

PEPS Plateforme d’Exploitation des 

Produits Sentinel 

R Red 

RF Random Forest 

RGB Red-Green-Blue composite 

ReLU Rectified Linear Unit 

RXD Reed-Xiaoli Detector 

S1 Sentinel-1 

S2 Sentinel-2 

SAR Synthetic Aperture Radar 

SAR-O SAR-Optical 

SCL Scene Classification 

SFD Small Fire Database 

SLC Single Look Complex 

SM Strip Map mode 

SRTM Shuttle Radar Topography 

Mission 

SWIR Short Wave InfraRed 

TIRS Thermal InfraRed Sensor 

TOPSA

R 

Terrain Observation with 

Progressive Scans SAR 

USGS United States Geological Survey 

UTM Universal Transverse Mercator 

VIIRS Visible Infrared Imaging 

Radiometer Suite 

WGS84 World Geodetic System 1984 

 

 

 


	1. Executive Summary
	2. Introduction
	2.1. Background
	2.2. Purpose of the document
	2.3. Applicable Documents
	2.4. The SAR-Optical algorithm: general considerations

	3. Data
	3.1. Sentinel-1 system and data products
	3.2. Sentinel-2 system and data products
	3.3. Ancillary datasets
	3.3.1. Landsat-8 data products
	3.3.2. Active fire products
	3.3.3. Other datasets


	4. Methods
	4.1. Site selection for algorithm development and preliminary validation
	4.2. Sentinel-1 pre-processing
	4.3. Sentinel-2 pre-processing
	4.4. SAR-optical data integration
	4.5. Reference burned perimeters and validation
	4.6. Burned area mapping
	4.6.1. Convolutional Neural Networks (CNN) - background
	4.6.2. Selection of training data
	4.6.3. Assessment of optimum CNN configuration for BA mapping

	4.7. Preliminary results and significance for BA mapping algorithm development
	4.7.1. Optimum CNN configuration
	4.7.2. SAR-optical mapping strategy

	4.8. Preliminary algorithm validation

	5. References
	Annex 1: Acronyms and abbreviations

