

Advancing predictions of nearshore processes within coastal ecosystems

Ryan Lowe

2nd Sea State CCI User Meeting

21 March 2021

Drivers of coastal flooding and erosion

+

Shoreline water level

- 1. Tides and long term mean sea level variability +
- 2. Barometric pressure Onshore wind stress Storm surge

3. Swash motions Wave setup

Mitigation of coastal hazard risk by ecosystems

Two key physical mechanisms: 1. Wave attenuation through <u>drag dissipation</u> 2. Wave attenuation through <u>wave breaking</u>

Wave breaking

Examples: Dissipation by drag forces

Kelp forests

Seagrass meadows

Coral reefs

Mangroves

Examples: Dissipation by wave breaking

Coral reefs

Temperate reefs

Oyster reefs

Artificial reefs

Use of ecosystems for nature-based coastal protection

- Over the past decade there has been a substantial growth in the proposed use of ecosystem features to enhance coastal protection
- Compared to coastal engineering design guidelines, quantitative "guidelines" for nature-based features are lacking -> can impede uptake

Physical process: 1. Wave dissipation by canopy drag forces (Lowe et al. 2005a, 2007 - JGR)

1D wave energy equation:

$$F_d = \frac{1}{2} \rho C_d \lambda_f \left| U \right| U$$

$$\mathcal{E}_d$$
 = rate of wave energy dissipation
by ecosystem drag forces

Large roughness (canopies) formed by coastal ecosystems

Alternatively, F_d can be parameterised using analogous porous media flow theory (Lowe et al. 2008 – L&O)

Wave attenuation increases with:

U = velocity <u>within</u> the ecosystem

λ_f = ecosystem <u>frontal</u> area per unit bed area (projected into flow)

 C_d = ecosystem <u>drag coefficient</u>

Wave transformation over a coral reef: Importance of drag dissipation (Lowe et al. 2005b - JGR)

200 m

forereef

reef flat

25

20

10

Dissipation (W/m²)

- Typically ~60% of incident

wave energy was dissipated

by bottom friction on this reef

(mild-sloping ~1:50 Kaneohe Bay reef)

200

100

Cross-shore partitioning of wave dissipation

300

400

500

600

700

Wave transformation over a coral reef: Importance of drag dissipation (Lowe et al. 2005b, JGR)

Frequency-dependent frictional dissipation

$$\mathcal{E}_{d,j} = \frac{1}{4} \rho f_{e,j} u_{b,r} u_{b,j}^2$$
 (e.g., Madsen 19

f_{e,j} = energy dissipation factor (j-th frequency component)

Typical wave friction factors:

- Coral reefs: $f_w \sim 0.3-1.0$
- Beaches: *f*_w ~0.01-0.1

Higher frequency waves are more dissipative

- Due to wave-canopy interactions: Lowe et al. (2005a, 2007) JGR
- Need to account for how canopy flow attenuation varies across different wave frequencies

Velocity inside the ecosystem (U)

 $\epsilon \downarrow d = -F \downarrow d U$ $F\downarrow d = 1/2 \rho C \downarrow d \lambda \downarrow f |U|U$

Flow attenuation parameter:

A × × B

Staggered

Flow

Frequency dependent

a)

Canopy flow model (Lowe et al. 2005a, JGR)

Velocity inside the ecosystem (U)

 $\epsilon \downarrow d = -F \downarrow d U$ $F\downarrow d = 1/2 \rho C \downarrow d \lambda \downarrow f |U|U$

• Due to canopy forces (drag and inertial), flows can be <u>much</u> lower than that above the ecosystem ($\alpha = U \downarrow within / U \downarrow above$)

Aquatic vegetation

also field studies...

Incorporation of canopy models into coastal hydrodynamic models

Van Rooijen et al. (2020), JGR

Depth-averaged model (Xbeach)

(implementation of Lowe et al. 2005 canopy model)

Van Rooijen et al. (2021), in review

Drag "coefficient" (C_d)

 $\epsilon \downarrow d = -F \downarrow d U$ $F\downarrow d = 1/2 \rho C \downarrow d \lambda \downarrow f |U|U$

- C_d = f(shape, ecosystem 'density', flexibility, flow conditions)
- \bullet Most effective way to determine C_d is to directly measure drag forces on ecosystem element
- Alternative approaches using turbulent porous media theory

Increasing morphological complexity

(Etminan et al., Coastal Eng., 2019)

C_d ≈ 1-2

Australia Research Council Discovery Project (2020-2023)

Coral load cell measurements

Ecosystem frontal area (λ_f) - challenges with flexibility and complex geometries

Increasing difficulty

 $\epsilon \downarrow d = -F \downarrow d U$ $F\downarrow d = 1/2 \rho C \downarrow d \lambda \downarrow f |U|U$

(Abdolahpour et al., L&O, 2019)

 λ_{f} = frontal area per

per plan area

 Critically-important to accurately mimic dynamic behavior of seagrass:

Ca = drag/rigidity B = buoyancy/rigidity

"Effective" height (= f(B,Ca)) used to redefine λ_f

Physical process: 2. Coastal protection by wave breaking (e.g. reef structures)

Dissipation of sea-swell waves is only one part of the problem

 \checkmark Need to consider all of the processes that drive wave runup and sediment transport

Energy transfer during breaking

Wave transformation over reefs (cross-shore dynamics): insight from physical modelling

- 55-m long flume
- 1:36 geometry scaling
- 14 m long reef flat (500 m in prototype)
- 1:5 fore reef slope
- 1:12 beach slope
- Smooth and rough bed
- 16 wave and water level cases
- 18 wave gauges + 6 velocimeters
- Runup gauge

Buckley et al. 2015; 2016; 2018; 2020

Wave transformation over reefs (cross-shore dynamics): insight from physical modelling

Smooth and rough bed

- 1.5 cm (54 cm in prototype) concrete cubes
- ~6,000 cubes
- Roughness provides bulk frictional dissipation similar to natural reefs (wave friction factors ~0.2)

Wave transformation over reefs (smooth reef example)

Enhanced setup over steep reefs (influence of the 'roller') Buckley et al. 2015, JPO

- Wave forces (radiation stresses) are delayed due to the roller -> conversion of PE to KE prior to dissipation
- 2. Setup generation is more efficient in shallow

water:

3. Setup is enhanced on the steep slopes of reefs (not predicted by LWT)

Challenges for conventional wave models

-04

-0.6

-2

-1

0

x [m]

0.3 LWT S_{xx} **Q** 0.2 _____ LWT (shallow water) 0.1 0.0 -2 -1 **Energy density** 0.30 d) Ep 0.25 $-- E_k$ 0.20 щ^{0.15} ----TW7 0.10 0.05 0.00 --2 $^{-1}$ Energy flux 0.25 f) В 0.20 - F_{x, nonbreak} Bnonbreak 0.15 Ξ LWT (shallow water 0.10 0.05 0.00 -2 -1 Bathymetry 0.2 0.2 Bathymetry [m] Bathymetry [m] h) g) 0.0 0.0 -0.2 -0.2

-0.4

-0.6

-2

 $^{-1}$

0

x [m]

Radiation stress

0.4

b)

(Lowe et al. 2019, Ocean Modelling; Lowe at al. 2021, in prep)

-0.6

Influence of bottom roughness on wave setup Buckley et al. 2016, JPO

Radiation stresses

 Reduced by wave dissipation by roughness

Mean bottom stress

 Significant for rough case

Setup

- Similar reef flat setup
- Differences in setdown

Importance of low frequency waves (standing / resonant motions)

SWASH simulations

Buckley et al. 2018, JGR

Standing / resonant wave motions (very low frequency IG waves)

Wave runup contributions and influence of bottom roughness

 Runup dominated by wave setup and low IG (VLF) motions

Percent runup contribution (smooth runs)

Response to bottom roughness

Buckley et al. 2018, JGR

- Total $R_{2\%}$: -38%
 - SS: -32%
 - IG: -93%
 - VLF: -60%
 - Wave setup: -14% (setup not affected)

Wave-driven mean flows (2DH / 3D effects): implications for shoreline erosion / accretion

 With alongshore variability in reef morphology, wave breaking drives depth-averaged mean flows that interact with shorelines

reef

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Rocky reef reef (drifter tracks)

Ningaloo Reef

Lowe et al. (2015), ARMS

Contrasting shoreline responses from submerged breakwaters / artificial reefs

Example highlighting knowledge gaps...

7 of 10 sites reviewed experienced erosion

Table 1

Features of the sites and the submerged coastal structures reported in the published literature (B=length of structure, S=distance from undisturbed shoreline to structure, W=crest width, h=water depth at structure, h_c =water depth at crest of the structure, $\tan\beta$ =bed slope in the vicinity of the structure)

Location	Reference	Structure type	Shoreline response	Nourishment	Longshore transport rate (m ³ /year)	<i>B</i> (m)	S (m)	<i>W</i> (m)	<i>h</i> (m)	<i>h</i> _c (m)	tanβ
Delaware Bay, USA	Douglass and Weggel (1987)	Single breakwater	Erosion	Y	Negligible	300	75	Not reported	1	At MLW	Not reported
Keino-Matsubara Beach, Japan	Deguchi and Sawaragi (1986)	Single breakwater	Erosion	Y	Not reported	80	85	20	4	2 m below MLW	0.1 nearshore and 0.03 offshore
Niigata, Japan	Funakoshi et al. (1994)	Single breakwater +2 groins	Erosion	Ν	Exists, but not quantified	540	400	20	8.5	1.5 m below MWL	0.02
Lido di Ostia, Italy (#1)	Tomassicchio (1996)	Single breakwater	Erosion	Υ	50,000	3000	100	15	4	1.5 m below MSL	0.05
Lido di Ostia, Italy (#2)	Tomassicchio (1996)	Single breakwater	Accretion	Ν	50,000	700	50	15	3-4	0.5 m below MSL	0.1
Lido di Dante, Italy	Lamberti and Mancinelli (1996)	Single breakwater	Accretion	Y	Negligible	770	150	12	3	0.5 m below MSL	0.02
Marche, Italy	Lamberti and Mancinelli (1996)	Multiple segmented breakwaters	Erosion	Ν	Negligible	Not reported	100-200	10-12	3	0.5 m below MSL	Not reported
Palm Beach, FL, USA	Dean et al. (1997)	Single	Erosion	Ν	100,000	1260	70	4.6	3	0.7 m below MLLW	0.04
Vero Beach, FL, USA	Stauble et al. (2000)	Segmented breakwater	Erosion	Ν	30,000	915	85	4.6	2.1-2.7	0.25 m-0.35 m below MLLW	0.03
Gold Coast, Australia	Jackson et al. (2002)	Multi-function surf reef	Accretion	Υ	500,000	350	100-600	2	2 - 10	1 m below MLW	0.02

Ranasinghe and Turner (2006)

Assumes diverging wave-driven mean flows lead to erosion

Wave-driven flows over 2DH reefs: implications for shoreline erosion / accretion

wave

height

1.0

0.5

0.0

Mechanisms of sediment transport behind reefs (example from Ningaloo Reef)

• Large salients extending 10s-100s m seaward are common onshore of fringing coral reefs

• What are the mechanisms that form and maintain these features?

Bedload transport by nonlinear waves

Onshore sediment supply from ripple migration by skewed / asymmetric waves propagating through the channel

Influence of rocky reefs on seasonal beach erosion and accretion

Beach behaviour along reef fringed coasts can be entirely different than sandy beaches

- Seasonal erosion/accretion out of phase between reef-fronted and adjacent embayed beaches (no net sub-aerial volume change)
- This behaviour not reproducible by any conventional coastal morphodynamic model!

Segura et al., 2016, JGR

Influence of rocky reefs on seasonal beach erosion and accretion

Shoreline variability (5 years)

Summary

- Ecosystems shape nearshore processes by dissipating wave energy by drag forces and wave breaking
- Prediction of **drag dissipation** requires robust descriptions of how flows interact with the complex geometries and material properties of habitat-forming organisms
- Wave breaking over steep, shallow ecosystems (e.g. reefs) effectively dissipates sea-swell energy but can be converted to other forms (i.e. enhanced setup, low-frequency waves and mean currents) that contribute to flooding and erosion

