Characterizing the signature of a spatio-temporal wave field (in situ stereo imaging observations)

Alvise Benetazzo (ISMAR-CNR, Italy), **Filippo Bergamasco** (UNIVE, Italy), F. Barbariol, A. Torsello, L. Cavaleri, and many users

Università Ca'Foscari Venezia

OVERVIEW (from meeting keywords)

- Providing (some) sea truths for satellite and model data
- Significant wave height
- Directional spectrum shape
- Mean square slope
- Wave-ice interaction
- Wave-wave interaction
- Wave-current interaction
- Rogue waves

OVERVIEW

STEREO 3D IMAGING FOR SEA WAVES

- Features, present and future

APPLICATIONS

- Characterization of the spatio-temporal wave field

Why are we interested in *in situ* 3D observation for wave studies?

Spectral and statistical properties of wind waves are historically inferred from buoys or wave gauges installed at fixed locations at sea

> They can acquire elevation time-series at a single point only: $\eta(t)$

➔ A single time series can not describe accurately the complete spacetime wave dynamics and the directional distribution

Stereo wave imaging

This gap can be filled by vision-based 3D measurement systems

INPUT Stereo images →

Stereo wave imaging

This gap can be filled by vision-based 3D measurement systems

INPUT Stereo images →

OUTPUT $\eta(x, y) \rightarrow$

3D stereo measurement in time

We are able to measure the space-time evolution of the wave field in an area $\sim 200 \text{ m} \times 200 \text{ m}$ over time (10-15 Hz)

Acqua Alta oceanographic tower (Venice, Italy)

Stereo-vision: principle of operation

Let's assume we are able to:

1. Identify corresponding points in two images

Stereo-vision: principle of operation

Depth of each point can be estimated by intersecting (triangulating) 3D rays passing through the corresponding points and the optical centers

Stereo-vision: principle of operation

Problems

- How to match points efficiently (robust and fast)?
- How to accurately calibrate the system?
 - Intrinsic
 - Extrinsic (R, t)

Matching corresponding points

Stereo-matching is efficient since potential matches can be found along each corresponding epipolar lines

Camera (intrinsic) calibration

- A **known object** (usually a planar chessboard) is imaged by the stereo rig in multiple poses to recover its **geometrical** properties.

Previous experiences

- Chase, J.L et al. The directional spectrum of a wind generated sea as determined from data obtained by the Stereo Wave Observation Project Department of Meteorology and Oceanography and Engineering Statistics Group 03, 267 (1957).
- [2] Sugimori, Y., A study of the application of the holographic method to the determination of the directional spectrum of ocean waves. *Deep-Sea Research and Oceanographic* **22**, (1975).
- [3] Holthuijsen, L. H., Observations of the directional distribution of oceanwave energy in fetch-limited conditions. *Journal of Physical Oceanography* 13, 191–207 (1983).
- [4] Shemdin, O. H., Tran, H. M., & Wu, S. C. Directional measurement of short ocean waves with stereophotography. *Journal of Geophysical Research: Oceans* 93, 13891–13901 (1988).
- [5] Banner, M. L., Jones, I. & Trinders, J. c. Wavenumber spectra of short gravity waves. Journal of Fluid Mechanics 198, 321–344 (1989).

... lack of Computer Vision techniques and Computing power...

The WASS pipeline

In the past years, we proposed state-of-the-art methods in this field, contributing to the diffusion of the topic among the oceanographic community

- 1. Stereo camera *extrinsic calibration* (*R*, *t*) from sea images
- 2. Point cloud *filtering* and mean sea-plane *alignment*
- 3. Reconstruction *errors* varying the geometrical configuration of the stereo system
- 4. Reconstruction from *moving* vessels

WASS (Wave Acquisition Stereo System)

INPUT

WASS computes

Stereo frames (synch. < 1 ms)
 Camera intrinsic parameters

- Focal length
- Principal point
- Lens distortion coefficients
 (calibrated in the lab)

- ① Stereo extrinsic
 - parameters (*R, t*)
- 2 Mean-sea-plane
 - coefficients
- (3) 3D wave field $\eta(x, y)$ for each stereo pair

http://www.dais.unive.it/wass (Bergamasco et al., 2017. C&G)

Welcome to the WASS project

WASS (Waves Acquisition Stereo System) is an optimized stereo processing pipeline for sea waves 3D reconstruction.

WASS was developed by [Filippo Bergamasco](http://www.dsi.unive.it/~bergamasco/) as a joint-collaboration between [Università Ca'Foscari di Venezia](http://www.unive.it) and [CNR ISMAR](http://www.ismar.cnr.it/people/benetazzo-alvise) (CNR-ISMAR) in the field of vision-based 3D surface reconstruction of sea waves.

The first open-source software for sea-waves 3D reconstruction

Kinds of measurement error

- 1. Calibration Error: error in estimating camera parameters
- **2. Matching Error**: uncertainty in the determination of the corresponding pixels for each image pair (dark, bright areas)
- **3. Quantization Error**: reconstruction is **quantized** along the image scanlines producing characteristic patterns along the *y*-axis

We can simulate and **evaluate** the expected reconstruction accuracy given a stereo setup

Latest Applications

How rogue waves look like in 3D

- Maxima at different locations on the *xy*-space
- Missed by local instruments (e.g., buoys)

Rogue waves in Space and Time

- ➔ Individual, rogue wave is isolated in time (...it seems to appear out of nowhere...) but coherent in space-time
- → Likelihood and shape of rogue waves

(Benetazzo et al., 2015; Benetazzo et al., 2017)

Crest speed of high waves

FIG. 3. Probability density function of normalized crest speed c/c_0 for all crests transitioning through a maximum local crest steepness, from a 35-minute WASS stereo-video sequence from an ocean tower. Note, the tall peak at $c/c_0 \sim 0.75$. Local standard error bounds are indicated.

Linking Reduced Breaking Crest Speeds to Unsteady Nonlinear Water Wave Group Behavior

M. L. Banner,^{1,*} X. Barthelemy,^{1,2} F. Fedele,³ M. Allis,² A. Benetazzo,⁴ F. Dias,⁵ and W. L. Peirson² ¹School of Mathematics and Statistics, The University of New South Wales, UNSW Sydney, NSW 2052, Australia ²Water Research Laboratory, School of Civil and Environmental Engineering, The University of New South Wales, Manly Vale, New South Wales 2093, Australia ³School of Civil and Environmental Engineering, and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA ⁴Institute of Marine Sciences, National Research Council (CNR-ISMAR), Venice 30122, Italy ⁵UCD School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

Wave load on marine structures

1.a

lighthouse

extreme wave, wave breaking, wave loading La Jument Lighthouse: a real scale laboratory for the study of giant waves and of their loading on marine structures

J.-F. Filipot¹, P. Guimaraes², F. Leckler², J. Hortsmann³, R. Carrasco³, E. Leroy⁴, N. Fady⁴, M. Prevosto⁵, V. Roeber⁶, A. Benetazzo⁷, C. Raoult², M. Franzetti⁸, A. Varing¹, N. Le Dantec⁴

¹France Energies Marines, Plouzané, France, ²Shom, Brest, France, ³HZG, Geestacht, Germany, ⁴Cerema, Plouzané, France, ⁵Ifremer, Plouzané, France ⁷CNR, Venice, Italy, ⁸IUEM-LGO, Plouzané, France

Stereo/x-band radar data fusion

Stereo imaging and X-band radar wave data fusion: An assessment

Alvise Benetazzo^{a,*}, Francesco Serafino^b, Filippo Bergamasco^c, Giovanni Ludeno^d, Fabrice Ardhuin^e, Peter Sutherland^e, Mauro Sclavo^a, Francesco Barbariol^a

^a Institute of Marine Sciences, Italian National Research Council (ISMAR-CNR), Venice, Italy

^b Institute of Biometeorology, Italian National Research Council (IBIMET-CNR), Florence, Italy

^c DAIS – Università Ca' Foscari, Venice, Italy

^d Institute for Electromagnetic Sensing of the Environment, Italian National Research Council (IREA-CNR), Naples, Italy

^e Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, Ifremer, IRD, Brest, France

From a moving ship

→ Coupling with an IMU for the 6-DOF motion

Stereo wave imaging from moving vessels: Practical use and applications

journal homepage: www.elsevier.com/locate/coastaleng

Alvise Benetazzo ^{a,*}, Francesco Barbariol ^a, Filippo Bergamasco ^b, Andrea Torsello ^b, Sandro Carniel ^a, Mauro Sclavo ^a

^a Institute of Marine Sciences, Italian National Research Council (ISMAR-CNR), Venice 30122, Italy ^b DAIS - Università Ca' Foscari, Venice, Italy

[∂]Sharp-Crested Breaking Surface Waves Observed from a Ship-Based Stereo Video System∅

MICHAEL S. SCHWENDEMAN AND JIM THOMSON

Applied Physics Laboratory, University of Washington, Seattle, Washington

(Manuscript received 9 August 2016, in final form 24 January 2017)

Wave dissipation in the MIZ

→ Wave fields (from 3D) and sea-ice concentration (from images)

(Alberello et al., 2021)

Wavenumber-Frequency 3D spectrum

Oceanic near-surface current (via Doppler shift)

- Energy of linear / nonlinear modes
- Directionality of short waves

Bi-modal distribution of short-wave energy

© () BY **Ocean Science**

Note on the directional properties of meter-scale gravity waves

Charles Peureux¹, Alvise Benetazzo², and Fabrice Ardhuin¹

¹Laboratoire d'Océanographie Physique et Spatiale, Univ. Brest, CNRS, Ifremer, IRD, 29200 Plouzané, France ²Institute of Marine Sciences, Italian National Research Council, Venice, Italy

Present research: WASSfast

WASS computes a 3D wave field from stereo pair in ~1 min (half of the time is spent for *gridding* from the point cloud)

(Bergamasco et al., 2021; C&G)

WASSfast

WASSfast: spectrum update

Two alternative approaches

- **1. PU:** A constrained minimization procedure working in the Fourier wavenumber domain
 - Slower, more accurate
- **2. CNN:** A learning-based Convolutional Neural Network to perform "depth completion" based on physical priors
 - Extremely fast, slightly less accurate in the high frequencies, still under heavy testing...

WASS vs. WASSfast

- Reconstructs a dense point cloud (approx. <u>3E6 points per</u> stereo pair on a 5mpix camera)
- Frames are processed in parallel and no temporal relation is considered
- Gridding is a separate step implemented as a general scattered surface interpolation
- Highly accurate, well tested
- Approx. 30 sec per stereo frame processing time

- Reconstructs a sparse point cloud for each frame (10K on average)
- Frames are processed sequentially, the dispersion relation is used to optimize a time-evolving 3D surface
 - Gridding is interleaved with point reconstruction
 - Less accurate, designed for realtime processing
 - Up to from 0.5 fps (PU) to 5 fps (CNN) on modern GPUs

Low-cost WASS with smartphones / GoPro®

Appendix A

The following two codes were written in *Python* and *praat* programming language respectively and were applied to synchronize video data acquired by the smartphones as described in the Section 3.1—*Frame synchronization*.

inside video path

inside video path

inside video path

wass_sync.py

, , ,

author: matheus vieira needs: Python 2 or 3 / ffmpeg software / Praat software

- set video path (pathname)
- video files (cam0.mp4, cam1.mp4)
- path called 'cam0'
- path called 'cam1'
- crosscorrelate.praat file inside video path

Matheus Vieira ^{1,*,†}[©], Pedro Veras Guimarães ², Nelson Violante-Carvalho ¹, Alvise Benetazzo ^{3,‡}[©], Filippo Bergamasco ^{4,‡}[©] and Henrique Pereira ¹

Take home message

- Stereo wave imaging allows to measure the surface wave field in space and time with good accuracy
- No assumptions on the underlying wave mechanics
- Fitting ships of opportunity (code not available yet)
- Limitations
 - -Coverage
 - -Need of a superstructure (with power supply)
 - -Huge amount of data (less with WASSfast)

Many thanks for your attention!

Paddle- and wind-wave tank (Qingdao, P.R. China; FIO)

Paddle- and wind-wave tank (Qingdao, P.R. China; FIO)

