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Eddy-covariance: the only way to directly measure

land-atmosphere fluxes
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A complementary way to model natural
fluxes over land
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machine learning global gridded data sets of 
predictors+ +

Global gridded estimates of  fluxes

Annual net land CO
2
 uptake [ ]
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Drought effects not well represented
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machine learning
►more and other 
techniques  

Features:
►extend suite of EO predictors
►both local (full resolution) and global scales
►dedicated QC+gapfilling
►develop  methods to account for footprint 
mismatch & heterogeneity of EO data
►harmonization

       2.0 

Set-up
►semi-operational
►flexible
►scalable

Eddy covariance & meteo:
►more sites & more site-years
►careful QC, gapfilling, ancillary
►harmonization of different sources
►additional eddy processing

Resolution
►towards subdaily and ~km scale

Uncertainty characterization
►better characterization of different 
types and sources of uncertainty
►develop methods to estimate an 
overall uncertainty
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Towards a better understanding of 
how characteristics of LST datasets 
affect the data-driven simulation of 
land-atmosphere fluxes:

 →LST ranks among the most important predictor variables!
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Towards a better understanding of how
characteristics of LST datasets affect the data-driven
simulation of land-atmosphere fluxes:

what do we want to know?
• representativeness of

temporal information,
ie hourly vs 4xdaily,
hourly avrg. vs inst.
hourly

• directional effects
• effects of retrieval

methods

which data?
• MODIS daily:

• CCI:
cutouts @0.01◦/ 1km

• NASA:
cutouts @1km
MxD11A1

• Seviri hourly:
• CCI:

0.05◦, oblique,
instant obs.

• customized LSAF:
0.05◦, hourly avrg.,
oblique & nadir

→ Site-level cross-validation at ∼ 300 sites in Europe
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Important processing steps

• geometrical correction to nadir (Ermida et al. 2018 RS)
for Seviri and possibly CCI MODIS

• QC using flags, uncertainty information and beyond
• dedicated gapfilling
• cutout around towers for MODIS/ account for

scale-mismatch of tower footprint–Seviri pixel explicitly
(downscaling) or implicitly (in the machine-learning
training)

Discussion on any of these aspects very welcome!
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Applications in the fields of...

data-driven carbon, water and energy flux estimates

• the terrestrial carbon, water, energy cycles
• atmospheric sciences
• for the benchmarking of models of the land surface
• ecology
• land-atmosphere interactions
• ...

Spatially explicit flux estimates will be produced for the
best performing set-up in the cross-validation
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first tests on normalizing directionality

NASA Terra daytime swath products in the region of
Puechabon/ France

normalized using the Kernel-hotspot model after Ermida et al. 2018
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first tests on normalizing directionality
NASA Terra daytime swath products in the region of
Las Majadas/ Spain

Remote Sens. 2017, 9, 608  3 of 25 

 

performance is expected to offer some information on the source of the uncertainties in the prediction 
of GPP. 

2. Methods 

2.1. Study Site 

The study area is a managed Mediterranean TGE or “dehesa” located in Las Majadas del Tiétar, 
in Cáceres, Spain, located at 259 m a.s.l. (39°56′29′′N, 5°46′24′′W) (Figure 1). Climate is Continental 
Mediterranean with an annual mean temperature of 16.7 °C and annual mean precipitation ~700 mm 
[32]. In summer, temperature goes over 40 °C and only the 6% of the annual rainfall is accumulated 
[33]. The tree layer is mostly composed by scattered plants of Quercus ilex subsp. ballota L., an 
evergreen Mediterranean species; these are separated by 18.8 m (standard deviation, σ = 5.0 m) so 
that the fractional cover is approximately 20%. Mean tree height is 7.9 m (σ = 0.9 m), mean crown 
horizontal radius is 4.18 m (σ = 0.9 m) and mean vertical radius is 2.7 m (σ = 0.5 m) [34]. The grass 
layer is rich in species such as Rumex acetosella L., Erygium campestre L., Erodium cicutarium L. or 
Erodium botrys (Cav.) with a variable spatial and temporal distribution. Grasses show a strong 
phenology, they usually peak in spring, senesce by summer, regrow in autumn immediately after the 
first rainfall and go dormant in winter. Cow grazing induces spatial variability and usually keeps the 
grass layer shorter than 30 cm. 

 
Figure 1. Location of the flux towers in Majadas del Tiétar. Each square corresponds to a synthetic 1 
km pixel centered on each one of the towers. 

Pacheco-Labrador et
al. 2017

normalized with the Kernel-hotspot model after Ermida et al. 2018 11
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Thank you :)

  

In-situ eddy-covariance 
fluxes & meteorology

machine learning global gridded data sets of 
predictors+ +

Global gridded estimates of  fluxes

Annual net land CO
2
 uptake [ ]
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questions, suggestions, criticism?
now, Padlet or swalth@bgc-jena.mpg.de
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