When is all the sea ice gone?

28 May 2021

When is all the Arctic summer sea ice gone?

21. September 1992

21. September 2020

21. September 20xx

- 1. When is the Arctic sea-ice free according to classical science?
- 2. When is the Arctic sea-ice free according to climate models?
- 3. Ways forward

1. When is the Arctic sea-ice free according to classical science?

- 2. When is the Arctic sea-ice free according to climate models?
- 3. Ways forward

A four step approach

- 1. Formulate a question
- 2. Develop a theory or model to answer this question
- 3. Obtain measurements to test theory/model
- 4. Compare measurements with theory/model

Richard Feynman

"It doesn't matter how beautiful your theory is. It doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong."

Max-Planck-Institut für Meteorologie

Max-Planck-Institut für Meteorologie

Max-Planck-Institut für Meteorologie

Max-Planck-Institut für Meteorologie

Max-Planck-Institut für Meteorologie

1 $\Delta LW \sim$ Emissions For each ton of CO₂ emissions, incoming longwave radiation increases roughly linearly (empirical result).

$\label{eq:linearly} \begin{array}{l} \Delta LW \sim \mbox{Emissions} \\ \mbox{For each ton of CO}_2 \mbox{ emissions, incoming longwave radiation increases} \\ \mbox{roughly linearly (empirical result).} \end{array}$

2 $\Delta SW_{\text{ice edge}} \approx -\Delta LW$

To compensate for increase in net incoming LW by, say, 1 W/m², ice edge moves North until net incoming SW is decreased by 1 W/m²

SIA and mean solar irradiance as a function of latitude

1 $\Delta LW \sim Emissions$

For each ton of CO_2 emissions, incoming longwave radiation increases roughly linearly (empirical result).

2 $\Delta SW_{\text{ice edge}} \approx -\Delta LW$

To compensate for increase in net incoming LW by, say, 1 W/m², ice edge moves North until net incoming SW is decreased by 1 W/m²

3 $\Delta SIA \sim \Delta SW_{ice edge}$

The change in sea-ice area is linearly related to change in incoming SW radiation at the ice edge.

Hence: $\Delta SIA \sim$ Emissions

Sea-ice loss is linearly related to CO₂ emissions

Sea-ice loss is linearly related to CO₂ emissions

A conceptual model of sea-ice loss

1 $\Delta LW \sim$ Emissions or ΔT

For each ton of CO_2 emissions, incoming longwave radiation increases roughly linearly (empirical result).

2 $\Delta SW_{\text{ice edge}} \approx -\Delta LW$

To compensate for increase in net incoming LW by, say, 1 W/m², ice edge moves North until net incoming SW is decreased by 1 W/m²

3 $\Delta SIA \sim \Delta SW_{ice edge}$

The change in sea-ice area is linearly related to change in incoming SW radiation at the ice edge.

Hence: $\Delta SIA \sim$ Emissions or ΔT

Sea-ice loss is linearly related to global mean temperature rise

Linearity allows for estimate of ice-free Arctic threshold

Based on the conceptual model and the observed sensitivity, the Arctic will on average be practically sea-ice free throughout September for future CO₂ emissions of around 800 Gt and for a global warming of around 1.6 °C.

What about internal variability?

- Observed fluctuations around linear trend line are usually below 1 million km²
- The standard deviation of the 1953-1978 HadISST sea-ice area record in September is 0.36 million km², giving a 2σ interval of around 0.7 million km²
- Assuming an internal variability of $2\sigma = 1$ million km² and the observed sensitivities (e.g., $3 \text{ m}^2 / \text{ton}$), we get an uncertainty range from internal variability of around 300 Gt of future CO₂ emissions and 0.3 °C of future global warming

Based on the conceptual model and the observed sensitivity, the Arctic will on average be practically sea-ice free in September for future CO_2 emissions of around 800±300 Gt and for a global warming of around 1.6±0.3 °C.

Future sea-ice evolution

Stroeve and Notz, Env. Res. Lett., 2018; Notz and Stroeve, Curr. Clim. Change Reports, 2018

Insights from conceptual model and observations

- Based on the conceptual model and the observed sensitivity, the Arctic will on average be practically sea-ice free in September for future CO₂ emissions of around 800±300 Gt and for a global warming of around 1.6±0.3 °C.
- Current CO2 emissions are around 40 Gt per year, so for current emissions the Arctic will be sea-ice free throughout September for the first time in 10 to 25 years
- In all SSP emission scenarios, future emissions of CO₂ exceed 500 Gt, so the Arctic will become practically sea-ice free at least occasionally in all plausible future emission scenarios.

- 1. When is the Arctic sea-ice free according to classical science?
- 2. When is the Arctic sea-ice free according to climate models?
- 3. Ways forward

How can we use a climate model?

- ...as a tool that can be used as a proxy for reality by help of observations
- ...as a tool that can be used as a proxy for reality by help of understanding

Climate models with observations as a proxy for reality?

+ Observations =

September Arctic sea-ice area in CMIP6 SSP5-8.5

September Arctic sea-ice area in CMIP6 SSP5-8.5

The impact of internal variability

How a climate model sees the world

The impact of internal variability

Model evaluation

Model evaluation

Projections

Inflated uncertainty of future change

Climate models with understanding as a proxy for reality?

+ Understanding =

"People systematically overlook subtractive changes"

"Improving objects, ideas or situations [...] requires a mental search for possible changes. Here we show that people systematically default to searching for additive transformations, and consequently overlook subtractive transformations." (Adams et al., Nature, 2021)

The issue of climate model complexity

- We often assume that by adding processes to a climate model, we bring the model into closer agreement with "reality". While this only sometimes is true, adding processes always makes the models more complex
- By adding complexity, we might make the models less useful: The complexity of climate models already today implies that we often no more "understand" what they do. If they don't match our expectations, we usually assume the model to be flawed.
- To compensate for this complexity, we have started using emulators of climate models, as a workaround to reduce complexity. These can be understood as us admitting that model complexity must often be reduced for the models to be helpful

Arctic sea ice in CMIP6: September past and future

September

CMIP6 models: When is Arctic SIA < 1 million km²?

CMIP6 models: When is Arctic SIA < 1 million km²?

When is the Arctic sea-ice free for the first time?

- The added value of CMIP6 model simulations for answering this question is unclear:
 - As a function of CO₂, the CMIP6 model ensemble largely confirms the result from the simple conceptual model
 - As a function of global mean temperature, the CMIP6 model ensemble underestimates the observed sensitivity and reaches an ice-free Arctic at much higher warming levels than the conceptual model. I personally find the result from the conceptual model more convincing (but I'm biased...)
- It is unclear whether improvements of any kind will ever make the CMIP6 model ensemble more fit for answering this specific question than the simple conceptual model with observational constraints

- 1. How do we gain insights in "classical" science?
- 2. When is the Arctic ice free based on this approach?
- 3. What can we learn from climate models?
- 4. Ways forward

How we maybe often work...

But maybe this is more promising...

UH Universität Hamburg der forschung | der Lehre | der Bildung

Summary

- The Arctic will be practically sea-ice free in September for the first time for future CO2 emissions of 800±300 Gt
- Current emissions are 40 Gt per year.
- The Arctic will be practically sea-ice free in September for the first time for a temperature rise of 1.6±0.3 °C relative to pre-industrial levels
- CMIP6 climate models only add limited additional insight for this particular question relative to a conceptual model
- Climate models and measurements are both tools to inform our understanding. Bringing the two together on more equal grounds could be a promising route forward for understanding the climate system of our planet.

