



E. Chuvieco, M.L. Pettinari, J. Lizundia-Loiola, G. Otón, M. Tanase, M.A. Belenguer, C. Gonzalo, D. Rodríguez, A. García, D. Stroppiana, M. Boschetti, T. Storm, G. Kirches, M. Böttcher, A. Heil, I. Bouarar, F. Mouillot, W. Chen, P. Ciais



https://esa-fire-cci.org

### Goal of the project:

Generation of global long-term and properly validated burned area (BA) products to serve the needs of climate modellers.

# **Currently available BA products:**

MODIS FireCCI51: 2001-2019, 250 m & 0.25 degrees
AVHRR FireCCILT10: 1982-2017, 0.25 degrees

# Highlights:

- First ever global BA product based on MERIS 300m.
- First ever global BA product based on MODIS 250m.
- First ever global BA product based on LTDR time series.
- First ever S-2 BA product covering a continent (Africa).
- First ever S-1 BA product covering a large area (Amazon).
- First ever spatio-temporal validation of BA products.
  All products adapted to the climate user needs.

- Africa: S-2 MSI FireCCISFD11: 2016, 20m
- Africa, Amazon & Indonesia: SAR regional BA products
- Strengthen the EO fire European community.
- European-generated BA datasets are now credible to the international community.







Global validation sites (2018). More than 5,000 pairs of Landsat and S-2 data have been processed to generate BA reference perimeters for Fire CCI validation. Validation sites have been statistically selected, and stratified by biome and fire intensity.

# HS S2 BA S1 BA S1+S2 BA Integrated SAR (S1) & Optical (S2) algorithm based on Convolutional Neural Networks (CNN). BA Algorithm developments: 40 N 40 N 40 N 40 N 40 N 140 N

- Adaptation to S-3 sensors: SYN
- Integration of S-1 and S-2 sensors.

#### Validation:

- Global sample based on Landsat OLI.
- Regional sample based on S-2 and Planet.

### Product assessment:

- Atmospheric emissions from chemical models and MOPITT
- Global fire size distribution analysis based on power-law fits
   Product dissemination highlights:
- Fire CCI presentation at COP25 Madrid.
- FireCCI51 now available at Google Earth Engine.
- Nature paper on Australian extreme fires (2019-2020).





Global  $\beta$  parameter from the fire patch datasets for the years 2001-2019.  $\beta$  is the index parameter of a power-law fit on fire patch size distribution. Lower values indicate higher frequencies of large fire patches. Top-left: FireCCI51 dataset with a 6-day cut-off value for patch clustering; top-right: the same dataset with a 12-day cut-off value; bottom-left: MODIS Collection 6 dataset with a 6-day cut-off value; bottom-right: the same dataset with a 12-day cut-off value.  $\beta$  values higher than 2 are not shown in order to highlight regions with high frequency of large fires (i.e. low  $\beta$ ). Our results show that the FireCCI51 burned area dataset is in good agreement with previous BA datasets in detecting large-size fire patches.



## Project Impact





ESA-ECSAT Fermi Avenue Harwell Campus, Didcot, OX11 0FD United Kingdom cci.esa.int @esaclimate

European Space Agency