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Summary 

This document presents the technical basis of the algorithms used to generate the 

AVHRR-LTDR Fire_cci Burned Area product v1.1. The document analyses the input 

requirements and the process to create the product, including the stages of the processor 

to get the burned area data and the formatting of the data to obtain the product publicly 

released. 
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1 Introduction 

1.1 Background 

The ESA Fire_cci project focuses on developing and validating algorithms to meet 

GCOS ECV requirements for (consistent, stable, error-characterized) global satellite 

data products from multi-sensor data archives. Fire modellers require precise 

information on the timing, size, intensity and spatial distribution of fires (Hantson et al. 

2016). Satellite burned area products have been generated in the last years based on 

existing global observation sensors (Mouillot et al. 2014), such as MODIS, 

VEGETATION, ATSR, MERIS, Sentinel-2 and Sentinel-3 data. These products only 

cover from 2000 and all show inconsistencies and omission and commission errors 

(Granier et al. 2011; Padilla et al. 2015). Most papers dealing with fire models 

emphasize the need to extend the existing time series of burned area information 

backwards. Although the GFEDv4 includes BA trends from 1995, the authors recognize 

greater uncertainties for the pre-MODIS era (Giglio et al. 2010). Estimations for 

previous periods were based on fire ignition and propagation models (Thonicke et al. 

2001) or on fire occurrence reports provided by some national fire services (Mouillot 

and Field 2005). These data were complemented with auxiliary sources, such as 

journalist news, literature sources or charcoal deposits in lakes (Power et al. 2010).  

The alternative to extend the BA datasets before the MODIS era was the NOAA-

AVHRR (Advanced Very High Resolution Radiometer) archive, dated back to 1981. 

Unfortunately, only a degraded version of the AVHRR data was archived globally. It 

was named Global Area Coverage (GAC, at 4x4 km), obtained through a spatial 

sampling of the High Resolution data (HRPT, 1x1 km approximately at nadir). From the 

GAC data, NASA has released a time series of AVHRR data, which adequate 

calibrations and geometric, radiometric and atmospheric corrections to make it useful 

for time series analysis. Since the HRPT data were archived only at particular regions 

and needs considerable pre-processing effort, it was considered that the LTDR was the 

most adequate time series of AVHRR datasets to feed a BA algorithm that would 

extend the BA time series of the Fire_cci baseline contract.  

FireCCILT10 Beta product was a first try to obtain a global long-term BA product. That 

product has several issues and problems such as inconsistence trends due to sensor 

degradation, and low BA detection in boreal and temperate regions. Although 

FireCCILT10 presented a good performance in tropical regions (Otón and Chuvieco 

2018; Otón et al. 2019). 

2 BA Algorithm description  

2.1 General scheme 

The methodology was based on several steps as seen in Figure 1. The structure and 

some steps have been obtained from FireCCILT10 algorithm (Otón and Chuvieco 2018; 

Otón et al. 2019) but the new algorithm (Otón et al. 2021b) has many novelties and 

improvements (Table 1). First of all, three inputs (Section 2.2) were still  necessary to 

start the process: the AVHRR-LTDR product (version 5, Pedelty et al. 2007) from 1981 

to 2018 (Section 2.2.1); land cover data (CCI and Copernicus Land Cover products) 

(Section 2.2.2). In the previous version, a single Land cover (year 2000) was used and 

now, a Land cover per year was used to achieve better adaptability to Land cover 

changes (burnable-unburnable). The last input, the BA product FireCCI51 (Lizundia-
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Loiola et al. 2020) (Section 2.2.3) was resampled to train the Random Forest (Breiman 

2001) models instead of NASA MCD64A1 Collection 6 (MCD64A1 hereafter) BA 

product (Giglio et al. 2018), to improve the proportions of Burned Area and to increase 

the number of burned cases. Temporal composites (Section 2.3.1), Spectral Indices, 

Cloud Mask (Section 2.3.2) and a Burnable Mask were calculated to obtain LTDR 

Burned Index (LBI) (Section 2.3.3). Specifically, Cloud Mask calculation was 

significantly improved using more stringent conditions based on the literature. Yearly 

profiles select an immediate month even if they were from another year, instead of only 

the months within the natural year. 

After processing data to prepare to train random forest (RF), which was improved with 

a new classification approach and parameters, two types of RF were developed (Section 

2.3.4). One of them was a global RF model where global data enters, and a Boreal RF 

model where boreal data, more than latitude 49, was taking into account because it has a 

different signal response, number of samples and conditions, which in a global model 

were conditioned by tropical fires. 

Henceforth, the processes were done for each type of model. RF results were obtained 

per month and global/boreal in probabilities which indicated the probability of a pixel to 

be burned or not. A new approach (Section 2.4) was undertaken where a formula per 

month and continental region (Giglio et al. 2013) was developed according to the Dice 

Coefficient (DC) sensitivity analysis (Section 2.4.1.1) from the last algorithm, Otsu 

thresholding (Otsu 1979) to adapt the threshold to each image (Section 2.4.1.2), and 

Solar Zenith Angle (SZA) correction (Section 2.4.1.3) to decrease the effect of sensor 

degradations and better detection of burned pixels. That formula was applied to each 

probability image to get a binary classification. A proportion analysis (Section 2.4.2) in 

the FireCCI51 time series per continental region was carried out to assign a proportion 

in the binary classifications. When BA proportions were assigned in the global and 

boreal results, both were joined in a single monthly classification to obtain a final BA 

product, called FireCCILT11.  

Table 1. Changes in the BA algorithm from the FireCCILT10 Beta product. 

 FireCCILT10 FireCCILT11 

Input data 

Training data MCD64A1 C6 product FireCCI51 product 

Land cover 

A single LC in the time 

series (year 2000) 
Annual (from 1992) 

ESA CCI-LC v1.6.1 

product 

ESA CCI-LC v2.0.7 product 

and C3S-LC v2.1.1 product. 

Cloud mask Red and NIR values > 90% 
Criteria to filter clouds 

(Section 2.3.2) 

Temporal sequence 

Yearly profiles 
All months within a single 

year 

Regressive and progressive 

months to contiguous months 

Random Forest models 

# samples in each tree 20k 10M 

Years to train 8 years 18 years 

Models Global Global and boreal 

Thresholding methods 

Monthly thresholding Global for time series Regional for each image 

Adaptive thresholds Dice Coefficient 
Otsu method and Dice 

Coefficient 
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 FireCCILT10 FireCCILT11 

Input data 

SZA correction Not applied 
Regional for each image 

(1982-2000) 

BA proportions  

Monthly BA assignments Global Regional 

Cases (Figure 3) A and B The four cases 

Products 

Years 1982-2017 1982-2018 

Finally, the BA product was inter-compared (Annex 2: Inter-comparison) with other BA 

global products, national fire perimeters, regional BA products and other studies (Otón 

et al. 2021b), and was validated (Otón et al. 2021a) with Landsat perimeters (Annex 3: 

Validation) and a consistent low-resolution method (Pareto Boundary, Boschetti et al. 

2004). A temporal trend analysis is described in Otón et al. (2021c). 

This new product, called FireCCILT11, has been developed from 1982 to 2018 (no data 

available for 1994) and includes pixel and grid BA values on a monthly basis. The pixel 

and grid products are publicly available at: https://climate.esa.int/, last accessed in 

October 2021, or through the CCI Open Data Portal (http://cci.esa.int/data, last accessed 

in October 2021). Also, it is available in Google Earth Engine 

(https://code.earthengine.google.com/ ?asset=users/g_oton/FireCCILT11, last accessed 

on October 2021). 

 

Figure 1. FireCCILT11 algorithm is shown as a flowchart. Gray boxes are the input data where the 

algorithm starts. Orange/beige boxes are data to compare and validate the new BA product. Black 

lines mean that the process is running once per month or year, blue lines that the process is running 

twice per month or year, one per each RF model. Orange/beige lines are validation and inter-

comparison. 

https://code.earthengine.google.com/%20?asset=users/g_oton/FireCCILT11
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2.2 Input data 

2.2.1 AVHRR-LTDR product 

NASA created a global-full time series of AVHRR data, at 0.05° resolution (approx. 5 

km), named the long-term data record (LTDR) dataset. There are various others long-

term coarse AVHRR data series (GIMMS or Pathfinder), whose strengths and 

weaknesses have been cross validated, as reported in the literature (Alcaraz-Segura et al. 

2010; Tucker et al. 2005). Taking into account those analysis, the AVHRR LTDR data 

series was chosen as the most adequate input for extending the Fire_cci BA datasets 

back to early 80’s.  

LTDR product (Version 5) is a long-term NASA dataset of satellite Earth observations 

(40 years) based on NOAA-AVHRR observations. It consists of only the afternoon 

(ascending) passes from the NOAA polar orbiting satellites. In particular, it is collected 

by NOAA-7, 9, 11, 14, 16, 18, and 19. The original data was acquired by the AVHRR 2 

and 3 sensors and stored in reduced resolution, in Global Area Coverage (GAC, 4 x 4 

km) images. GAC resolution is further reduced from the original resolution (Local Area 

Coverage [LAC], 1.1km, https://www.avl.class.noaa.gov/release/data_available/avhrr/ 

index.htm#top, last accessed on October 2021) that was globally stored in 1991. LTDR 

is daily, global and resampled to 0.05° (≈5 km), from 1981 to date, although the time 

series is not fully continued. There are a number of observational limitations, where the 

most important two were found in 1994 and from 2019 to date. 1994 presents important 

gaps and noise in the images from March and empty data from September, due to a 

satellite (N11) degradation (Otón et al. 2019; Riaño et al. 2007; Tucker et al. 2005) and 

lack of N13 (failed, Carmona-Moreno et al. 2005) supplied by N14 (Ignatov et al. 

2004). From 2018 onwards the data quality from the satellite (N19) has been degrading, 

with important gaps in the images and noise, which makes the data unusable for 

obtaining acceptable results (https://www.usgs.gov/centers/eros/science/usgs-eros-

archive-advanced-very-high-resolution-radiometer-avhrr?qt-

science_center_objects=0#qt-science_center_objects,  last accessed on October 2021). 

Consequently, 1994, 2019 and 2020 were not used (Hansen et al. 2018; Tian et al. 2015) 

in the development of the FireCCILT11 product. 

The LTDR product has three products: AVH02 TOA Surface Reflectance Product, 

AVH09 Surface Reflectance Product and AVH13 NDVI Product. In this study, AVH09 

is used, which is preprocessed and has ten original channels. The channels are surface 

reflectance for channel 1 (red, 0.58–0.68 μm) and channel 2 (near infrared, 0.725–1.1 

μm), medium infrared (surface reflectance and top of atmosphere (TOA) brightness 

temperature for channel 3, 3.55–3.93 μm), and thermal infrared (TOA brightness 

temperature for channel 4, 10.3–11.3 μm and TOA brightness temperature for channel 

5, 11.5–12.5 μm), view zenith angle, SZA, relative azimuth, and quality assessment 

field (QA). 

https://www.avl.class.noaa.gov/release/data_available/avhrr/%20index.htm#top
https://www.avl.class.noaa.gov/release/data_available/avhrr/%20index.htm#top
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-advanced-very-high-resolution-radiometer-avhrr?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-advanced-very-high-resolution-radiometer-avhrr?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-advanced-very-high-resolution-radiometer-avhrr?qt-science_center_objects=0#qt-science_center_objects
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Figure 2: availability of LTDR v5.0 daily images for the full time series. 

The AVHRR-LTDR V5 products for the 1981-2021 time period are: 

 Surface reflectance: 

o SREFL_CH1 (0.58 – 0.68 µm) 

o SREFL_CH2 (0.725 – 1.1 µm) 

o SREFL_CH3 (3.55 – 3.93 µm)* 

 TOA brightness temperature: 

o BT_CH3 (3.55 – 3.93 µm)* 

o BT_CH4 (10.3 – 11.3 µm) 

o BT_CH5 (11.5 – 12.5 µm) 

 View zenith angle (VZEN), Solar zenith angle (SZEN according to LTDR 

product or SZA according to this document). 

 Relative azimuth (RELAZ). 

 Quality Assessment Field (QA). 

 Fill value (No Data) = -9999 

 Scale Factor: 

o Surface reflectance = 0.0001 

o TOA brightness temperature = 0.1 

o Zeniths and Azimuth = 0.01 

 Spatial reference: 

o GCS datum based upon the Clarke 1866 ellipsoid. 

o EPSG: 4008 

o Datum: Based on Clarke 1866 spheroid 

 Satellites (and sensors) used to generate the LTDR dataset are the following: 

o N07 (AVHRR2): 1981 – 1985  

o N09 (AVHRR2): 1985 – 1988  

Month 

Year\
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

121 2 3 4 5 6 7 8 9 10 11

0 4

1 2

5 3

Gap day Two sensors with valid images

Valid day Two sensors but only a valid image in one of them

Corrupt file Date repeated on the same sensor

Important gaps and noise in the images
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o N11 (AVHRR2): 1988 – 1994 

o N14 (AVHRR2): 1995 – 2000 

o N16 (AVHRR3): 2000 – 2007 

o N18 (AVHRR3): 2005 – 2009  

o N19 (AVHRR3): 2009 – 2021 

(*) From 2000 to 2003, the channel 3 was changed from 3.55 – 3.93 µm to 1.58 - 1.64 

µm for day time acquisitions. 

Several corrections and calibrations have been applied based on the Pathfinder program 

(El Saleous et al. 2000). Among the corrections, there are radiometric, geometric and 

atmospheric corrections (Rayleigh scattering, ozone, water vapour, and aerosol 

correction such as aerosol correction in Pinatubo and El Chinchon eruptions (El Saleous 

et al. 2000; Vermote et al. 2009)), and BRDF correction by MODIS (Villaescusa-Nadal 

et al. 2019b). Furthermore, the LTDR dataset take into account several calibrations, 

where the visible and near infrared were empirically calibrated, due to the lack of any 

onboard calibration in the satellite (El Saleous et al. 2000), and the multisensory 

calibration using spectral adjustment selecting N14 as a reference (Villaescusa-Nadal et 

al. 2019a). Infrared channels are calibrated onboard.  

Despite this, some inconsistencies (Beck et al. 2011; Otón et al. 2019) are present in the 

visible channels due to degradation in the sensors, and the entrance of new AVHRR 

sensors which destabilize the time series. The reconfiguration of Channel 3 (from 3.55–

3.93 μm to 1.58–1.64 μm) over 3 years and the different saturation of Channel 3 

between AVHRR2 (50°C) and AVHRR3 (63°C) (Otón et al. 2019; Trishchenko et al. 

2002) make that Channel inconsistent for use in the algorithm (Otón et al. 2019). 

Furthermore, the degradation of the sensors implies severe orbital drift (Figure 2) from 

Sun-synchronism (Csiszar et al. 2003; McGregor and Gorman 1994; Price 1991; Riaño 

et al. 2007; Weber and Wunderle 2019), they lack an orbit adjust system to compensate 

for varying atmospheric drag (Price 1991), which produces a delay upon the cross the 

equator (Privette et al. 1995) and provokes variations of illumination (Csiszar et al. 

2003; McGregor and Gorman 1994; Privette et al. 1995; Riaño et al. 2007; Weber and 

Wunderle 2019), different diurnal cycle (Ignatov et al. 2004), false trends, changes in 

background temperatures (measured reflectance and brightness temperatures, Weber 

and Wunderle 2019), signal properties (Tian et al. 2015) and poor quality of data (Otón 

et al. 2019). These variations and problems are greater when the SZA are higher 

(Stengel et al. 2020). Therefore, the sensor degradation is recognized as being of about 

≈5-10% in the relative accuracy of the visible channels (Los et al. 1994). 

 

Figure 3. Time series of solar zenith angle values for a stable pixel located in Sahara Desert -

Mauritania (20.35ºN, -8.3ºW) - of the LTDR time series. The impact of sensor’s degradation 

produces a delay in the cross the pixel. 



 
Fire_cci 

ATBD AVHRR-LTDR  

Ref.: Fire_cci_D2.1.3_ATBD-AVHRR-LTDR_v1.0 

Issue 1.0 Date 19/11/2021 

Page 14 
 

Moreover, high latitudes have lacks and low quality of observations in winter in both 

hemispheres (Otón et al. 2019), because the satellites cover those latitudes at night 

(Giglio and Roy 2020). 

The LTDR product, although with some issues yet to improve, is a useful and important 

dataset. In fact, it has been used in different studies such as Vegetation Continuous 

Fields (Hansen et al. 2018), surface phenology (Zhang et al. 2014) and BA detection 

(García-Lázaro et al. 2018; Moreno-Ruiz et al. 2019; Otón et al. 2019). 

2.2.2 Land Cover 

ESA’s CCI Land Cover v2.0.7 (CCI-LC, ESA 2013) product and Copernicus Climate 

Change Service (C3S) Global Land Cover (C3S-LC, Copernicus 2019) products v2.1.1 

are global and annual Land Cover products to 300m of spatial resolution. CCI-LC 

products were developed within the CCI programme (https://climate.esa.int/en/ 

projects/land-cover/, last accessed on October 2021) from 1992 to 2015 and C3S-LC 

(https://cds.climate.copernicus.eu/, last accessed on October 2021) from 2016 to 2019. 

This last product aims to be the continuation of the CCI-LC product and is fully 

consistent with its predecessor, keeping a similar temporal and spatial resolution that 

allows their use in the algorithm. Both products were used to generate a burnable mask 

(Otón et al. 2019), to optimize the algorithm and avoid probable commission errors, 

reclassifying (burnable and unburnable) and resampling to the AVH09 resolution (0.05 

degrees). Unburnable areas were bare soil, water, urban areas, permanent snow and ice 

(Otón et al. 2019, Lizundia-Loiola et al. 2020). After that process, we obtained the 

burnable proportion area within each pixel. In the case that the burnable proportion area 

in a pixel was lower than 20%, that pixel was discarded from the analysis (Otón et al. 

2019; Plank et al. 2017). We selected the previous year to the study year to take into 

account the cover conditions and variability of the target period. For the 1982-1992 

period, land cover from 1992 was used as CCI and C3S don't provide information 

before 1992. 

2.2.3 FireCCI51 

The FireCCI51 dataset (Lizundia-Loiola et al. 2020) is a global BA product developed 

within the CCI programme (https://climate.esa.int/en/projects/fire/, last accessed on 

October 2021). Its use keep consistency with the CCI programme. That product is 

generated through MODIS images from its first date of availability (from 2001 to 2020) 

and also uses the CCI-LC. FireCCI51 is a global and monthly dataset at 250m in the 

pixel product and 0.25° in the grid product. It has been validated using a global 

statistical design sample, showing similar accuracy to other global BA products 

(commission error (Ce) = 54.4%, omission error (Oe) =67.1%), although that product 

has shown to be more sensitive in detecting smaller burned patches (Lizundia-Loiola et 

al. 2020, Moreno-Ruiz et al. 2020) than MCD64A1. Furthermore, FireCCI51 increases 

the number of burned cases noticeably. FireCCI51 detects a 10% more BA than 

MCD64A1 globally, and increases BA in most continental regions (10 of 14) of the 

world. Significantly, FireCCI51 detects more BA (up to ≈75%) in boreal and template 

regions of Europe and Asia. FireCCI51 also shows a good performance in Boreal 

America region (Moreno-Ruiz et al. 2020), being better than MCD64A1. Therefore, that 

product in pixel format was resampled at 0.05° to for use it in the algorithm. 

https://climate.esa.int/en/%20projects/land-cover/
https://climate.esa.int/en/%20projects/land-cover/
https://climate.esa.int/en/projects/fire/
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2.3 Pre-processing of LTDR data 

2.3.1 Composites 

Composite techniques are a suitable and frequent method for improving the utility and 

quality of daily data in time series analysis (Roy 1997). Thereby, those techniques can 

smooth or remove clouds, shadows, noise, radiometric instability, very oblique angles 

or artefacts, depending on the chosen method, which underestimate biophysical 

parameter values (Los et al. 1994). In this study, we created monthly composites, 

usually used in BA (Chuvieco et al. 2018; Giglio et al. 2013; Grégoire et al. 2003; 

Lizundia-Loiola et al. 2020), or long-term studies (Hansen et al. 2018; Tian et al. 2015), 

from the AVH09 product. In particular, we selected the maximum temperature 

technique (MaxT) which offered robustness and great results in several studies. That 

technique increases atmospheric attenuation and sensitivity to the detection of burned 

pixels, but decreasing or avoiding clouds, cloud shadows, high satellite zenith angle and 

off-nadir pixels (Cihlar et al. 1994; Chuvieco et al. 2005; Roy 1997). Between two 

temperature channels in AVH09, channel 4 (10.3–11.3 µm) was chosen because it has a 

stable calibration (Cihlar et al. 1994), high saturation (57ºC), and deletes high and cold 

clouds (Li et al. 2001). 

2.3.2 Cloud Masking 

In the development of BA products it is essential to provide cloud-free images to the 

algorithm (Giglio et al. 2018; Lizundia-Loiola et al. 2020). AVH09 QA is not accurate 

(Otón et al. 2019) and MaxT composites eliminated a great number of affected pixels 

but clouds were able to be present for various reasons, for example: that all observations 

were cloudy in a pixel when the composite was created, or that difficult clouds to 

remove with Channel 4 such as low clouds (Li et al. 2001). There are many cloud mask 

studies available (James and Kalluri 1994; Simon et al. 2004; Stroppiana et al. 2002) 

although in our case, most interesting approaches were global studies (James and 

Kalluri 1994; Tucker et al. 2005). We have mixed some interesting methodologies to 

adjust them to our available data and features (Table 2). We have created a threshold 

method to detect cloud-free pixels, where Channel 1 reflectivity of more than 40% is 

removed (Stroppiana et al. 2002) to delete low clouds and fire smoke (Li et al. 2001); 

albedo (Channel 1 divided by Channel 2) more than or equal to 0.9 and albedo less than 

or equal to 1.1 was removed to eliminate reflectance ratio clouds (James and Kalluri 

1994); Channel 4 less than 249K (≈-24ºC) was removed to delete thermal gross clouds 

(James and Kalluri 1994), high and cold clouds (Li et al. 2001); and Channel 5 less than 

273K (≈0ºC) was removed to eliminate cloud screening (Tucker et al. 2005). 

Table 2. Criteria to filter clouds in the AVH09 images. If one of the conditions is met, the pixel is 

filtered. 

Criteria Description Reference 

Channel 1 >= 40% 

reflectance 
delete low clouds and fire smoke Stroppiana et al. (2002) 

0.9 < Albedo < 1.1 

Where: 

𝐴𝑙𝑏𝑒𝑑𝑜 =  
Channel 1

Channel 2
 

 

eliminate reflectance ratio clouds 
James and Kalluri (1994) 

Channel 4 <= 249K 
delete thermal gross clouds, high 

and cold clouds 
James and Kalluri (1994) 

Channel 5 <= 273K cloud screening Tucker et al. (2005) 
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The number of observations was calculated monthly as the sum of the daily 

observations (0-28/31) in which a pixel follows the No cloud mask conditions. If there 

were two satellites available, the number was divided into two to keep the coherence 

throughout the time series. 

2.3.3 LTDR Burned Index (LBI) 

Input bands of LTDR Burned Index (LBI) were obtained by a statistical analysis in 

Otón et al. (2019). In that study several original bands, common spectral indices and 

monthly temporal differences were analysed in a spectral BA separability study. The 

most sensitive variables to discrimination between burned and unburned pixels were 

selected. These variables are very common in BA studies: Channel 1 (0.58–0.68 μm) or 

Red (Chuvieco et al. 2018; Moreno-Ruiz et al. 2012; Plank and Martinis 2018; Ramo 

and Chuvieco 2017), Channel 2 (0.725–1.1 μm) or NIR (Chuvieco et al. 2008; 

Lizundia-Loiola et al. 2020; Moreno-Ruiz et al. 2013; Moreno-Ruiz et al. 2012; Plank 

and Martinis 2018; Ramo and Chuvieco 2017), Channel 5 (11.5–12.5 μm) or T5 (Plank 

et al. 2017), Global Environmental Monitoring Index or GEMI by Pinty and Verstraete 

(1992) (Carmona-Moreno et al. 2005; Chuvieco et al. 2008; Chuvieco et al. 2018; 

Moreno-Ruiz et al. 2013; Moreno-Ruiz et al. 2012; Oliva et al. 2011; Riaño et al. 2007), 

Burned Area Index or BAI by Chuvieco et al. (2002) (Chuvieco et al. 2008; Long et al. 

2018; Plank and Martinis 2018) and temporal differences (Bastarrika et al. 2018; Dillon 

et al. 2011; Fraser et al. 2000; Li et al. 2001; Moreno-Ruiz et al. 2013; Plank and 

Martinis 2018; Vhengani et al. 2015), the latter being very important in any product 

(Giglio et al. 2018; Lizundia-Loiola et al. 2020). 

GEMI =  Ƞ ·  (1 –  0,25 ·  Ƞ) – (
𝑅𝐸𝐷 − 0,125

1 − 𝑅𝐸𝐷

) (1) 

Ƞ =
(2 ·  (𝑁𝐼𝑅

2 −  𝑅𝐸𝐷
2) +  1,5 ·  𝑁𝐼𝑅 + 0,5 ·  𝑅𝐸𝐷)

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0,5
 

 

(2) 

 

BAI =
1

(𝑐𝑅𝐸𝐷 − 𝑅𝐸𝐷)2 +  (𝑐𝑁𝐼𝑅 − 𝑁𝐼𝑅)2
 (3) 

 

Where NIR and RED are the reflectance values of the NIR and Red channels, respectively, and 

cNIR and cRED are the convergence values for burned vegetation (defined for AVHRR by the 

authors of the index as 0.06 and 0.1, respectively). 

To increase the consistency of the temporal series, the variables (X) were normalized (z-score): 

𝑧 =  
𝑋 − μ

σ
 (4) 

where μ and σ are the mean and the standard deviations of the values of each monthly 

composite and X is the value in the month.  

The LBI formula was: 

𝐿𝐵𝐼 = 𝑧(𝑇5)– 𝑧(𝑇5_𝑑𝑖𝑓𝑓)– 𝑧(𝑅𝑒𝑑) + 𝑧(𝑅𝑒𝑑_𝑑𝑖𝑓𝑓)– 𝑧(𝑁𝐼𝑅) + 𝑧(𝑁𝐼𝑅_𝑑𝑖𝑓𝑓)
+ 𝑧(𝐺𝐸𝑀𝐼) + 𝑧(𝐵𝐴𝐼) + 𝑧(𝐵𝐴𝐼𝑡+1) (5) 
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(please note that the original definition of Otón et al. (2019) had an error that was later 

on noticed (Otón et al. 2020)).  

What in the formulas is called “diff” represents the difference between the composite of 

the month being analysed (t) and the composite of the previous month (t-1). Thus, t+1 is 

the composite of the following month. 

LBI were computed for each monthly composite. LBI shows the burned likelihood in a 

pixel, which present a positive strong response about the burned date, maximizing the 

spectral separation between burned and unburned pixels and facilitating the 

classification process. Since the LBI included a normalization of the temporal series, it 

was expected to be less sensitive than the original bands to variations in the SZA, 

particularly in the thermal channels. We checked (Table 3) this correction in a stable 

place with spatial uniformity (Cosnefroy et al. 1996) of the Algerian desert (23.80°N, 

0.40°W, Giglio and Roy 2020). The input of spectral indices (BAI and GEMI) and the 

LBI itself strongly reduced the impact of SZA and its consequences as also shown 

NDVI in other studies (Kaufmann et al. 2000; Los et al. 1994). 

Table 3. Correlation analysis between the Algerian desert pixel (23.80°N, 0.40°W) of the different 

variables of the synthetic index and LBI. The Pearson’s r is calculated for the time series of the 

study and for the AVHRR2 (1982-2000) and the AVHRR3 (2001-2018) period. 

 

2.3.4 Burned area detection models 

Machine learning is a powerful tool used in multitude of studies but that does not mean 

that it is the solution to all problems or questions (Jain et al. 2020). The most 

outstanding classifiers are Random Forest (RF), Super Vector Machine (SVM) or 

Neural Network (NN). SVM and NN are robust but more complex than RF (Rodriguez-

Galiano and Chica-Rivas 2012). RF was developed by Breiman (2001) and is the most 

accurate and robust methodology in several comparisons reviewed (Ramo et al. 2018; 

Rodriguez-Galiano et al. 2015; Rodriguez-Galiano and Chica-Rivas 2012). In RF the 

amount of training data does not matter, and it only needs a few parameter settings 

(Rodriguez-Galiano et al. 2015; Rodriguez-Galiano and Chica-Rivas 2012). RF is based 

on a decision trees combination, simpler methodology already used in fire studies such 

as classification (Dubinin et al. 2010) or regression models (Giglio et al. 2010; Hansen 

et al. 2018). RF classifications have been trained in many studies and diverse thematic, 

for example: mineral prospective (Rodriguez-Galiano et al. 2015), land cover 

(Rodriguez-Galiano et al. 2012), BA severity (Dillon et al. 2011) and BA (Ramo and 

Chuvieco 2017); less often we can see RF regression (Bunn and Goetz 2006). 

The databases were composed of all the years (2001-2018, 18 years) available, in which 

there were MODIS BA (FireCCI51) product to reduce noise input, as did Villaescusa-

Nadal et al. (2019b) by introducing 15 years into their BRDF study. Monthly databases 

were created to adjust the conditions of fire per each month, similar to Dillon et al. 

(2011) where they differentiated between ordinary years or not. As happens in different 

studies, few variables were entered (Dillon et al. 2011; Ramo and Chuvieco 2017; 

Rodriguez-Galiano et al. 2012). FireCCI51 grid cell was used to train the RF model 

Channel 1 Channel 2 Channel 5 GEMI BAI LBI 

1982-2018 -0,022 0,068 -0,837 0,062 0,045 0,043

1982-2000 0,056 0,043 -0,812 -0,053 0,002 0,010

2001-2018 0,022 0,034 -0,874 -0,057 0,081 -0,073
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where two classes (burned/unburned) are differentiated, being burned (any BA 

proportion). 75% of database entered in the classification and 25% in the validation. 

RF parameters (Section 2.3.4.1) are redefined and run in Scikit-learn (Pedregosa et al. 

2011). We conserved the trees number at six hundred (Otón et al. 2019; Ramo et al. 

2018) for its good precision-time relation, and we assigned a weight of 10% because our 

database is unbalanced (most data are burned) and burned data acquired more value in 

the context (Otón et al. 2019; Ramo et al. 2018). The maximum depth of the tree is 

expanded with all its leaves since pruning it does not prevent possible overtraining 

(Rodriguez-Galiano et al. 2012). Each tree is trained with ten million samples selected 

randomly. The RF outcomes were probabilities. 

The most important novelty regarding the beta version (Otón et al. 2019) was the 

development of two types of databases, one global and the another boreal. Despite RF 

being automatic and not needing local adaptation, it may not work the same spatially 

(Ramo and Chuvieco 2017). Due to different spatial accuracy and the gaps in the beta 

version, we decided to add a boreal model. This was partly caused by the differences 

between Boreal and Tropical fires, and the larger impact of the latter in generating 

global models (as most worldwide burned area occurs in Tropical regions (Dwyer et al. 

2000; Melchiorre and Boschetti 2018). 

Therefore, two types of monthly databases (Figure 4) were developed  to train global 

and boreal monthly RF models. In the temporal aggregation, global databases contained 

twelve months of LBI, while for boreal databases contained eight (March-October) as 

the probability of having Boreal fires in winter is very low (Beck et al. 2011; Kucêra et 

al. 2005), to include a complete temporal evolution of pre- and post-fire conditions. 

These monthly databases were generated by using five or three months previous to the 

burned one (auto-regressive months, Riaño et al. 2007), and the six or four months next 

to the burned one (auto-progressive months) depending on the type of model (global or 

boreal, respectively). 

 

Figure 4. Monthly composites used to create the RF models. Monthly models were created using 

LBI values from several months before and after the target period. For instance, the global RF 

model of August had as independent variables the LBI of August, LBI of five months before August 

(that is, March to July) and LBI of six successive months (September to February). The dependent 

variable was the target BA (FireCCI51) of each target month, in this example was the FireCCI51 of 

August. For the Boreal model winter months were discarded. 
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Finally, RF classifications are run (720 times, 432 global and 288 boreal) with the 

twenty models for the whole time series (1982-2018, except 1994) to obtain the output 

(probabilities) which is also used by Long et al. (2018) and Otón et al. (2019). 

RF probability is offered as the confidence level of the BA detection in the Pixel 

product and Standard error is calculated for the Grid product, which are available as 

auxiliary variables of the final FireCCILT11 product. 

2.3.4.1 Random Forest parameter tests 

The parameters were based on our previous experience (Otón et al. 2019), new tests and 

literature results (Ramo et al. 2018). We analyzed different models (new tests) and 

chose the best performances, according to: 

 Number of samples in each tree (20k,0.5M,1M, 3M, 7M, 10M, 11M 

(computational limit)) (Figure 5),  

 Weight of the burn class (None, 10%, 50%, Balanced) (Figure 6), 

 Maximum depth of the trees (5, 10, 20, None) (Figure 7), 

 FireCCI51 years to train (8, 15, 18) (Figure 8), 

 % of database to train the model (95%, 90%, 75%) (Figure 8). 

 

Figure 5. Analysis to obtain the best number of samples is each tree according to Dice Coefficient in 

the time series 2001-2018. From 20k used in FireCCILT10 Beta version to 11M which is our 

computational limit. 10M was selected in FireCCILT11, due to its accurate/time relation. 

 

Figure 6. Analysis to obtain the weight assigned to the burn class according to Dice Coefficient in 

the time series 2001-2018. From no weight to Balanced. 10% was used in FireCCILT11 and 

FireCCILT10 Beta version where it was set up in a similar parameter. 
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Figure 7. Analysis to obtain the maximum depth of the trees according to Dice Coefficient in the 

time series 2001-2018. From 5 to None. None was used in FireCCILT10 Beta version and 

FireCCILT11. 

 

Figure 8. Analysis to obtain the years and the % of database to train the model according to Dice 

Coefficient. From 5% to 25% of samples to validate and 8 to 15 years to train the model. 10% and 

8 years was used in FireCCILT10 Beta version and 25% and 18 years in FireCCILT11. 

2.3.4.2 Spatial nature of fire events 

Spatial coherence is common in the development of other algorithms (Giglio et al. 

2010; Grégoire et al. 2003; Lizundia-Loiola et al. 2020; Moreno-Ruiz et al. 2013) since 

it reduces omission errors (Lizundia-Loiola et al. 2020), for example Moreno-Ruiz et al. 

(2013) divided the Boreal American region into six parts. Furthermore, there are many 

factors that bear out that decision, the signal of boreal regions can remain detectable 

from 2 to 3 years after-burning (Eurasia, Dubinin et al. 2010) to 6-9 years (America, 

Moreno-Ruiz et al. 2013) depending on the biomass, vegetation, location, levels of 

burning and size (Dwyer et al. 2000; Melchiorre and Boschetti 2018). Boreal fires are 

larger than other fires (Moreno-Ruiz et al. 2013). However, in other regions, the signal 

does not remain for so long (Melchiorre and Boschetti 2018), such as Africa where the 

signal decreases after 17 days (Eva and Lambin 1998). The boreal model took into 

account latitudes more than or equal to 49° (Figure 9) since the entrance of template 

regions decreased but most boreal places were conserved. Thereby, boreal signal was 

stronger and it was more adjusted to fire season. We only inserted the boreal fire season 

(Dubinin et al. 2010) in the boreal models from March to October as in other studies 
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(Beck et al. 2011; Kucêra et al. 2005). Some studies were stricter in selecting the 

growing season (May to August, Bunn and Goetz 2006) or the most burned months 

(April to September, Dubinin et al. 2010; Moreno-Ruiz et al. 2013), but we preferred 

more data variability. 

 

Figure 9. FireCCI51 BA average (2001-2018) per months according to high latitudes. 

2.3.4.3 Global and boreal databases 

In addition, the quantity of data was very significant between global and boreal. In a 

month with high BA data like August, we found around seventy-five million (75M-

NBA global) of unburned samples in the global database (18 years) and half (around 

thirty-three million, 33M-NBA boreal) in the boreal database, but there were two 

million (2M-BA global) of BA in the global database and only 10% of BA (200k-BA 

boreal) in the boreal database. That difference was enormous for the correct training of 

a classification in RF, where there were other stronger signals of BA. Therefore, twenty 

models were done (Figure 4), twelve global models (one per month) and eight boreal 

models (one per month from March to October). 

2.4 Post-processing of model probabilities 

2.4.1 Binary classifications and Solar zenith angle correction 

Probabilities (between 0.000 and 1.000) of a pixel to be burned or unburned were 

obtained from RF. Defining a threshold is necessary in order to find a correct point 

where the classification is accurate and the omission and commission errors are 

decreased. An adaptative, automatic and regional threshold is developed per each month 

and continental region (Giglio et al. 2013) for each one of the probabilities images. The 

adaptative threshold was based on: 

 A fixed threshold, one per month and continental region but the same for the 

times series, obtained by a sensitive analysis of Dice coefficient. 

 An automatic threshold, one per month and continental region in each 

probability image, from an Otsu regional thresholding. 

 SZA correction, one per each probability image, month and continental 

region, by a SZA analysis. 

Temporal and automatic thresholds (Barbosa et al. 1999; Riaño et al. 2007) are very 

common to cope with large amounts of data. Also, adaptative thresholds are common in 
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other algorithms to deal with different vegetation covers (Lizundia-Loiola et al. 2020), 

so they can adapt to the diversity of several conditions instead of applying only one 

threshold (Alonso-Canas and Chuvieco 2015; Chuvieco et al. 2018; Lizundia-Loiola et 

al. 2020; Plank and Martinis 2018). In the same way, in order to focus the separability 

in specific locations, regional thresholds (Fraser et al. 2000; Pu et al. 2018), local 

adaptive thresholds (Fraser et al. 2004; Giglio et al. 2010), relative thresholds (Moreno-

Ruiz et al. 2013) and vicinity filters (García-Lázaro et al. 2018) are very often used. 

2.4.1.1 DC sensitivity analysis 

The best thresholds to convert the RF probabilities into a dichotomous classification 

(burned-unburned) in the FireCCI51 period were achieved by a sensitivity analysis. 

Thresholds between 0.00 and 1.00 (steps of 0.01) were iterated and the one with the 

classification more adjusted to FireCCI51 with the highest Dice Coefficient (DC) was 

chosen. The statistical DC (Dice 1945) is commonly used in BA studies (Lizundia-

Loiola et al. 2020; Padilla et al. 2017; Padilla et al. 2015), as it incorporates both the 

omission and commission error of the BA class. A threshold was calculated per month 

and continental region of each image in the FireCCI51 time series (2001-2018), 

considering any percentage of BA as burned pixel. A median value (Med) per month 

was calculated using all the thresholds of the 2001-2018 time-series (with existing 

FireCCI51 data) to obtain the Med(ThresholdDC). This meant that these values were 

only suitable for the MODIS era, but may not be well adjusted to the remaining years. A 

possible slight overtraining in the training period (2001-2018) could cause that the 

probabilities be higher in the 2001-2018 period than in the 1982-2000 one. In addition, 

the signal between AVHRR2 and AVHRR3 can affect the results in the same way, 

making the probabilities of 1982-2000 weaker. Despite that, DC thresholds were useful, 

but they needed to be adjusted to each image. 

2.4.1.2 Otsu threshold 

An automatic threshold method was used to achieve a threshold that fits each of the 

images and each of the continental regions. Otsu method (Otsu 1979) is a non-

parametric and automatic threshold selection without a parameter control. Otsu 

advantages are its simplicity, speed, efficiency, stability and universality (Zhan and 

Zhang 2019) and can be divided into global or local thresholding (Kumar and Tiwari 

2019). The threshold achieved by Otsu has a spectral contrast power and maximizes the 

separability of two classes by a grey-level histogram. Otsu is designed to find a valley 

between two peaks in the histogram to separate two classes where the deeper point is 

the optimum threshold (Otsu 1979). Therefore, the optimum threshold is the minimum 

intra-class variance and the maximum inter-class variance (Bastarrika et al. 2018; Bin et 

al. 2019; Vijay and Patil 2016). Otsu thresholding is a technique widely used and 

modified in many studies to discriminate classes in images (Kittler and Illingworth 

1985; Kumar and Tiwari 2019; Qu and Zhang 2010; Vala and Baxi 2013) such as 

mineral segments (Unajan et al. 2019; Zhan and Zhang 2019), changes detection 

(Huang et al. 2015) or BA (Amos et al. 2019; Bastarrika et al. 2018; Bin et al. 2019; 

Brown et al. 2018; Plank and Martinis 2018; Vhengani et al. 2015). 

Despite its advantages, Otsu’s method has general limitations, especially when the 

following situations occur: 

1. Unclear separation in the valley of the histogram (Bastarrika et al. 2018), 
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2. Unbalance between target (burned) amount of pixels and not-burned pixels  

(Bastarrika et al. 2018; Kittler and Illingworth 1985; Unajan et al. 2019; Vala 

and Baxi 2013), 

3. Discontinuous images (Qu and Zhang 2010), or 

4. Image noise  (Huang et al. 2015). 

In those limitations, there would take place a worse separation of classes, and the 

missing of weak signals of the object class (Kumar and Tiwari 2019). In the case of BA 

studies, Otsu can underestimate BA (Plank and Martinis 2018), although in our case 

Otsu underestimated in regions and months with high fire occurrence such as the fire 

season of Africa, and overestimated (limitation 2) in regions and months with low fire 

occurrence like months out of the fire season or boreal regions.  

Again, a median per month and continental region was calculated to obtain Med 

(ThresholdOtsu) for the period 2001-2018. Therefore, Otsu is adjusted by DC thresholds 

per month and continental region. Thereby, a relative constant is calculated in the 2001-

2018 period (Med(ThresholdDC)) per month, to learn how much correction is necessary 

in the ThresholdOtsu (according to each month from 2001-2018), so that corrected Otsu 

has values close to the optimal DC threshold, adapted to each image and region. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅 =
𝑀𝑒𝑑(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷𝐶)𝑚,𝐶𝑅

𝑀𝑒𝑑(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢)𝑚,𝐶𝑅
 (6) 

In this way, we adjust the optimum Otsu threshold of each image to the Optimum DC 

threshold: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑂𝑡𝑠𝑢  𝑚,𝐶𝑅 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅 
 (7) 

where m is the month, and CR is each of the continental regions. In this way, the 

corrected Otsu threshold has values close to the optimal DC threshold, but adapted to 

each image and region.   

Accordingly, the under/over-estimation of Otsu threshold was corrected and the images 

maintain their variability. 

In the case of continental region 1 or BONA (RF boreal model), it was necessary to do a 

regional correction due to the second Otsu limitation. In the central and eastern parts of 

that boreal region, the thresholds inserted a great deal of noise because there were many 

unburned pixels and few burned. Then, the ThresholdOtsu and later the Corrected Otsu 

thresholds were very low and did not offer a good separation of classes, resulting in 

large errors. That error only occured in the 1982-2000 period where the thresholds were 

lower and did not happen in every year. Furthermore, the error, which was corrected, 

was concentrated in the fire season with the most fires (June-September). An Med 

(ThresholdOtsu) (June-September) between the 2001-2018 period was compared to the 

ThresholdOtsu (June-September) of the different years of the 1982-2000 period. If the 

values were differentiated less than by 35%, the relative constant was not applied to 

Otsu because there were values in the fire season higher than or equal to the train years; 

if the difference was between 35-50%, the usual Otsu correction was applied; and when 

the difference was more than 50%, the relative constant was elevated to the second 

power in the Otsu correction. 

If median threshold difference < 35%: 
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𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑂𝑡𝑠𝑢  𝑚,𝐶𝑅 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 
 (7.1) 

If median threshold between 35-50%: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑂𝑡𝑠𝑢  𝑚,𝐶𝑅 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅 
 (7.2) 

If median threshold > 50%: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑂𝑡𝑠𝑢  𝑚,𝐶𝑅 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗  (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅)2 
 (7.3) 

On the one hand, the high thresholds did not lose their signal and they did not create 

omission. On the other hand, the low thresholds were increased, the noise was removed 

and the commission error was avoided. This type of adjustment has been performed in 

other boreal studies with other statistics like standard error (Kucêra et al. 2005). 

2.4.1.3 Solar Zenith Angle correction 

SZA is the angle between the solar centre and the zenith (the vertical) (Ji and Brown 

2017; Privette et al. 1995). The SZA effect has been detected from the first satellites in 

orbit (McGregor and Gorman 1994). Several studies have advised of the orbital drift 

(Carmona-Moreno et al. 2005; Giglio 2007; McGregor and Gorman 1994; Price 1991; 

Privette et al. 1995; Weber and Wunderle 2019) but there are many uncertainties 

(Carmona-Moreno et al. 2005), and there is no standard correction yet. Orbital drift 

provokes a later satellite passing through the local solar times which gradually 

accelerates during the satellite’s life (Carmona-Moreno et al. 2005; Devasthale et al. 

2012; Ji and Brown 2017), Price (1991) observed 1-2h of delay, McGregor and Gorman 

(1994) around 3h, Carmona-Moreno et al. (2005) 2 h 30 min, Giglio (2007) 3–6 h and 

Weber and Wunderle (2019) (in Europe) up to 5 h, although the difference between 

consecutive observations is low (Villaescusa-Nadal et al. 2019b). The drift effect 

changes in each satellite and it might not be constant at the time. Accordingly, SZA 

creates spurious trends, which can be false trends or lack of the real trends (Latifovic et 

al. 2012), according to the diurnal cycle amplitude of the geophysical properties 

(Devasthale et al. 2012; Tian et al. 2015). Those trends are identified as a systematic 

error and reveals significant differences between AVHRR-2 and AVHRR-3 (Latifovic 

et al. 2012), being greater during 1982–2000 (Tian et al. 2015). Also, depending on the 

several features: year season, location, latitude, atmosphere, region, land cover, 

vegetation types; the influence varies (Privette et al. 1995; Weber and Wunderle 2019) 

such as in semi-arid, arid and hyper-arid regions where it has more impact (Tian et al. 

2015), morphology (Sellers et al. 1994), or lower latitudes, which presents the greatest 

errors (Stengel et al. 2020). 

Some corrections have been applied in different studies to optimize the accuracy of the 

data or to improve their applications (Weber and Wunderle 2019), using the SZA 

channel. Gutman (1999) applied a simple formulation to correct temperatures and a 

simple least-square for the time series, dividing the global data in six vegetation classes. 

Lieberherr and Wunderle (2018) corrected temperatures with their own model. Latifovic 

et al. (2012) developed some two-phase correction. Devasthale et al. (2012) used a 

rotated empirical orthogonal function analysis (REOF). Privette et al. (1995) bore in 

mind in their equations the latitudes, and Sellers et al. (1994) the class cover. Other 

analyses remove pixels with high SZA (Los et al. 1994) or the years most affected (Ji 

and Brown 2017).  
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BA can be widely influenced by SZA since in Weber and Wunderle (2019) the number 

of observed fires decreases by 90%, which was also observed to be associated to the BA 

detection in the beta version of our product (Giglio and Roy 2020). In our case, we have 

created a relative parameter, to include in the Corrected Otsu threshold, in the most 

affected period (1982-2000) to correct this SZA effect. SZAcorrection parameter was 

calculated with the 𝑆𝑍𝐴̅̅ ̅̅ ̅
𝑚,𝐶𝑅 (particular month (m) and continental region(CR)) divided 

between the mean of the Min (SZAm, CR) in the period of the time series more affected 

(1982-2000), which was the corrected. 

𝑆𝑍𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚,𝐶𝑅 =
𝑆𝑍𝐴̅̅ ̅̅ ̅

𝑚,𝐶𝑅

𝑀𝑖𝑛 (𝑆𝑍𝐴𝑚,𝐶𝑅)
 (8) 

A relative parameter was more accurate (Latifovic et al. 2012) used as a coefficients of 

an exponential function (Sellers et al. 1994), as seen in the SZA correction influences 

on the Relative constant to corrected Otsu in our study. Thereby, the pixels more SZA 

affected were smoother by the relative constant, and the correction did not affect to Otsu 

so much. It means, the signal affected by SZA decreased and might give lower 

probabilities, so reducing the relative constant to detect attenuated signals captured by 

Otsu. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅

=  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗ (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅)𝑆𝑍𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚,𝐶𝑅  (9) 

Due to the fact that large angles are the cause of the greatest changes (Stengel et al. 

2020) and affecting some latitudes or regions more than others, we created a previous 

requirement, and include that correction per image, month and continental region 

(Privette et al. 1995). If the correlation between SZA and Otsu was less than 75%, the 

relation was not consider too high to correct and we trusted that previous threshold 

solved this relation; if r Pearson was between 75% and 90%, we applied the SZA 

correction; and when the correlation was more than 90%, the SZA correction was 

elevated to the second power because there was a very high SZA distortion. 

If r Pearson (SZA-Otsu) < 75%: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅 (9.1) 

If r Pearson (SZA-Otsu) between 75-90%: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅

=  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗ (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅)𝑆𝑍𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚,𝐶𝑅  (9.2) 

If r Pearson (SZA-Otsu) > 90%: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅

=  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑂𝑡𝑠𝑢,𝑚,𝐶𝑅 ∗ (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚,𝐶𝑅)(𝑆𝑍𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑚,𝐶𝑅)2
 (9.3) 

Therefore, a sample with a high SZA has an attenuated signal in the daily data, monthly 

composite and LBI. Once RF was classified, lower probability was assigned to this 

sample than a similar sample without SZA influence. After Otsu gave a threshold, the 

sample object did not have so much separability and stayed closer to the cut-off 

threshold. When Otsu was corrected, we tried to fit it to the optimum DC, but the 

adjustment should be much slighter not to lose that sample. 
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After applying the corrected Otsu in each image per month and region in both model 

results (global and boreal), a binary classification was achieved where the thresholds 

have been adapted to each image and region and SZA has been corrected. 

Despite those corrections, the lack of data and the decrease of good observations cannot 

be corrected and this must be taking into account as a limitation of the input data. 

2.4.2 Proportions 

In this step, BA proportions were developed to make a realistic classification where a 

pixel of 0.05° (≈25km
2
) can be burned among 0.000 to 1.000%. A soft classification is 

more accurate than a hard classification; although a pixel may have commission and 

omission errors, it will be lees affected by them (Pepe et al. 2010). In our case, a mixed 

coverage of a pixel of 0.05° between burned-unburned reduced especially the 

commission. 

The objective was to achieve a relationship between FireCCI51 and the binary 

classification (obtained in the previous step) that provided a similar total BA for the 

overlapping period, and then spanned that relation to extrapolate backwards. Therefore, 

an analysis (Otón et al. 2019) was done at grid-cell level (0.25°) each month in the 

FireCCI51 period, so that the spatial aggregation influence and spatial coherence 

(vicinity) were developed (Lizundia-Loiola et al. 2020). FireCCI51 BA was calculated 

for each cell (0.25°) during the overlapping period. Afterwards, the proportion of 

burned pixels (binary classification) that would sum up the total BA of FireCCI51 was 

estimated for each cell (0.25°). Four different cases were found (A to D in Figure 10). 

Case A was when both FireCCI51 and the binary classification detected BA. In that 

case, the BA proportion was obtained by dividing the total BA detected by FireCCI51 

during the target month by the total BA obtained in the binary RF classification (2001-

2018). Where FireCCI51 detected BA but the binary classification did not (case B) in 

the common time series, the area of one pixel was considered as the total BA in the 

binary classification. Where cells were never detected as BA in the FireCCI51 period 

but the binary classification detected some (case C), or where FireCCI51 and the binary 

classification did not detect BA in that month during the 2001-2018 time series (case 

D), the median of the BA proportions (Case A and B) of each continental region was 

used. Median proportion is a novelty from the beta version and a similar concept was 

applied in GFED4 from GFED3 (Giglio et al. 2013). Thereby, median proportion in 

previously undetected pixels reduced the omission error. A limitation of this method 

was a possible border effect (analysed in Otón et al. (2021c)), but we deemed that the 

proportion and the error would be small. The last condition was that a pixel could not be 

fully burned in a temporal window of six consecutive months.  

The final FireCCILT11 product was created substituting the global results in the boreal 

region with the results of the boreal model. 
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Figure 10. Calculation of BA proportions per grid cells (0.25°). This example shows the four classification possibilities (A-D), where y is the year, m is the 

month, and CR is each of the continental regions. The figure shows in the upper left the sum of FireCCI51 BA of the different years (2001-2018) and in the 

lower left the sum of the Binary classification BA (obtained from the RF algorithm, and deemed fully burned). In the centre, the BA proportions allocated to 

each grid cell is shown, which multiplied by the BA in each Binary classification image in the 1982-2018 time series allows to obtain the total burned area in 

each pixel. 

 

A C A C A C

B D B D B D

A C A C A C

B D B D B D

A C A C A C

B D B D B D

FireCCILT11

25 km2 burned

Area 0.05° = approx. 25 km2

1000 km2 burned

500 km2 burned 0 km2 burned

Proportions

 Grid = 25 pixeles at 0.05°

0 km2 burned420 km2 burned

0  km2 burned0 25  km2 burned
=

900 km2 burned

8% - Median of CR 100% 75 km2 burned25 km2 burned

0 km2 burned0 km2 burned

150 km2 burned100 km2 burned

+

300 km2 burned90 km2 burned

0 km2 burned0 km2 burned 0 km2 burned0 km2 burned

Binary classification

Binary classification

m, CR

*

y, m, CR

… +

0 km2 burned70 km2 burned 0 km2 burned30 km2 burned 0 km2 burned420 km2 burned

Year 1, m, CR Year y, m, CR Sum years (18 years), m, CR

y, m, CR

=

8% - Median of CR 50% 175 km2 burned250 km2 burned

6 km2 burned

=

14 km2 burned125 km2 burned

0 km2 burned500 km2 burned

900  km2 burned1000  km2 burned

FireCCI51

Year 1, m, CR Year y, m, CR Sum years (18 years), m, CR

0 km2 burned60 km2 burned

+

0 km2 burned90 km2 burned

=… +



 
Fire_cci 

ATBD AVHRR-LTDR  

Ref.: Fire_cci_D2.1.3_ATBD-AVHRR-LTDR_v1.0 

Issue 1.0 Date 19/11/2021 

Page 28 
 

2.5 FireCCILT11 product 

The algorithm was run with the available time series of LTDR data (1982-2018, except 

1994) to create the FireCCILT11 dataset, comprised by two products: monthly pixel 

files at 0.05° resolution, including date of detection according to the composite, 

confidence level, burned area and number of observations, and monthly grid files at 

0.25° resolution, including for each cell, total burned area, standard error, fraction of 

burnable area and proportion of observed area.  

Figure 11 shows the spatial distribution of total BA for two years. The spatial patterns 

of BA are consistent with other global BA products, with higher occurrence in the 

Tropical dry belts, particularly in Africa, Northern Australia, Colombia-Venezuela and 

Brazil, Cambodia, Eastern India, and Central Asia (Otón et al. 2021b; Otón et al. 

2021c). As in other global BA products, the FireCCILT11 product estimated that Africa 

was the most extensively burned continent (with 66% of global BA). Spatial trends 

were similar in the time series, including periods when the LTDR input was obtained 

from the AVHRR2 sensor (before 2000) and from the AVHRR3 (after 2000), as 

observed in the examples of figure 4. Temporal trends were analysed in Otón et al. 

(2021c). 

The annual BA average estimated by the FireCCILT11 product was 4.59 Mkm
2
, with an 

accumulated BA of 165.26 Mkm
2
 for the period 1982-2018 (excluding 1994), of which 

79.08 Mkm
2 

were from 1982-2000 and 86.18 Mkm
2
 from 2001-2018. The maximum 

annual BA was observed in 2011, with 5.18 Mkm
2
, and the least-burned year was 1991 

with 4.09 Mkm
2
. August was the month with the largest BA, with an average of 0.63 

Mkm
2
, and March was the smallest with 0.15 Mkm

2
.  

 

 

(a) 
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Figure 11. Annual FireCCILT11 BA (at 0.25° resolution) for two different periods: (a) 1982 belongs 

to the 1982-2000 period with the AVHRR2 sensor, and  (b) 2016 belongs to the 2001-2018 period 

with the AVHRR3 sensor. 

2.5.1 Accuracy assessment 

The inter-comparison (Annex 2: Inter-comparison) and validation (Annex 3: Validation) 

of the global long-term low resolution product is hard work but is absolutely needed to 

assess the accuracy of that product. On the one hand, spatial and temporal consistency 

of the product is checked with global BA products available (shorter times series), 

official perimeters (regional but long-term) and regional studies (literature) (Otón et al. 

2021b). On the other hand, the creation of a Landsat dataset to validate the product, as 

has been proposed by different authors (Boschetti et al. 2006; Padilla et al. 2017; Padilla 

et al. 2015), using CEOS-LPVS protocols (http://lpvs.gsfc.nasa.gov, accessed October 

2021) is unrealistic since the human effort would be too high and the procurement of 

images could be limited (Wulder et al. 2016). Thereby, a small but long-term Landsat 

dataset was created in the most fire affected region (Otón et al. 2021a). 

Commission error (Ce), Omission error (Oe), real Bias (rB) and Dice Coefficient (DC) 

were calculated (Annex 2: Inter-comparison, Otón et al. 2021b, Annex 3: Validation, 

Otón et al. 2021a) because they are the most common statistical measures in current BA 

validations (Lizundia-Loiola et al. 2020; Padilla et al. 2017; Padilla et al. 2015; Roteta 

et al. 2019). Also, trends and r Pearson are designed to show the correlation and 

behavior of the product (Otón et al. 2021a, Otón et al. 2021b, Otón et al. 2021c).  

𝐶𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑟𝑛𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 

 
(10) 

𝑂𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑟𝑛𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 

 
(11) 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 ·  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ·  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
 

 
(12) 

𝑟𝑒𝑙𝐵 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 − 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐵𝑢𝑟𝑛𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
 

 
(13) 

 

(b) 
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Annex 1: Acronyms and abbreviations 

°C Degree Celsius 

ATBD Algorithm Theoretical 

Basis Document 

ATSR Along Track Scanning 

Radiometers  

AVHRR Advanced Very High 

Resolution Radiometer 

BA Burned Area 

BAI Burned Area Index 

BRDF Bidirectional reflectance 

distribution function 

BT Brightness temperature 

C3S Copernicus Climate 

Change Service 

CCI  Climate Change Initiative 

CH Channel 

DC Dice Coefficient 

ECV  Essential Climate 

Variables 

EPSG European Petroleum 

Survey Group 

ESA European Space Agency 

FireCCI51 MODIS Fire_cci burned 

area product, version 5.1 

FireCCILT10 LTDR Fire_cci burned 

area product, version 1.0 

FireCCILT11 LTDR Fire_cci burned 

area product, version 1.1 

FOV Field of View 

GAC Global Area Coverage 

GCOS  Global Climate Observing 

System 

GCS Geographic Coordinate 

System 

GEMI Global Environmental 

Monitoring Index 

GFED  Global Fire Emissions 

Database 

GIMMS Global Inventory 

Monitoring and Modeling 

System 

HRPT High-Resolution Picture 

Transmission 

K Kelvin 

km Kilometre 

LAC Local Area Coverage 

LBI LTDR Burned Index 

LC Land Cover 

LTDR Long Term Data Record 

MaxT Maximum temperature 

technique 

MCD64A1 MODIS Burned Area 

product 

MERIS Medium Resolution 

Imaging Spectrometer 

MODIS  Moderate Resolution 

Imaging 

Spectroradiometer 

NASA National Aeronautics and 

Space Administration 

NBA Unburned 

NDVI Normalized Difference 

Vegetation Index 

NIR Near-infrared 

NN Neural Network 

NOAA National Oceanic and 

Atmosphere 

Administration 

QA Quality assessment field 

RELAZ Relative azimuth 

REOF Rotated empirical 

orthogonal function 

analysis 

RF Random Forest 

SREFL Surface Reflectance 

SVM Super Vector Machine 

SZEN Solar zenith angle 

SZA Solar zenith angle 

TOA Top of Atmosphere 

T5 Temperature Channel 5 

VZEN View zenith angle 

σ Standard deviations 

μ Mean 

µm Micrometre 
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Annex 2: Inter-comparison 

1 BA databases 

1.1 Global BA products 

Currently, there are two global BA products used to compare the new BA product. 

FireCCI51 is the most accurate (Lizundia-Loiola et al. 2020) but it has been used to 

train FireCCILT11 (Otón et al. 2021b), and for this reason it could show some bias. The 

other well-known global BA product is MCD64A1 (Giglio et al. 2018), which also has 

an acceptable accuracy (Padilla et al. 2015). MCD64A1 is a global and monthly dataset 

at 250m, developed by NASA and generated from MODIS images from 2001 to date. 

We compared the global BA (trends and correlation) to FireCCILT10 beta (Otón et al. 

2019), FireCCILT11, FireCCI51 and MCD64A1. Moreover, a continental regions 

analysis was done calculating the BA, and comparing with FireCCI51 and MCD64A1. 

In addition, a monthly study was performed to learn the behaviour of FireCCILT11 

months with FireCCI51 and MCD64A1, and the monthly behaviour in previous years. 

Furthermore, a SZA analysis was developed to test its correction, with SZA not 

affecting FireCCILT11. A global and regional analysis was done to show the correlation 

(r Pearson) among the beta version, new version and the number of good observations 

with the SZA.  

1.2 Regional databases 

1.2.1 Official perimeters and regional products 

Afterward, long-term comparison is only available using the national official perimeters 

and MTBS although the latter has less accuracy before 2000 (pre-MODIS era) (Moreno-

Ruiz et al. 2019). These data represent different regions and biomes, which were useful 

for learning the accuracy of FireCCILT11 in different parts of the world. The national 

official perimeters are not a ground truth and can contain errors (Canadian Forest 

Service 2017) but they are accurate data. 

Tropical regions are compared in Australia from 2000 to 2018 using the North Australia 

and rangelands fire information (NAFI, Available online: https://firenorth.org.au/nafi3/, 

last accessed on October 2021) which generates BA through satellite data.  

Boreal regions are compared in Canada and Alaska (USA). Canada, using the Canadian 

National Fire Database (CNFDB, Canadian Forest Service 2017) gives BA perimeters 

larger than 200 ha from 1980 to 2019. Alaska provides the Alaska fire history 

perimeters (AICC, Available online: https://fire.ak.blm.gov/predsvcs/maps.php, last 

accessed on October 2021) from 1940 to 2020. Alaska, as the years go by, provides 

more accurate data. This means that before 1987, only perimeters greater than 400 ha 

were provided, between 1987-1990, those greater than 40 ha were included, and after 

1990 those greater than 4 ha. 

Template regions are represented by USA, which has various state official perimeters, 

such as California (FRAP, Available online: https://frap.fire.ca.gov/, last accessed on 

October 2021), and Washington (Available online: https://geo.wa.gov/, last accessed on 

October 2021), but not a consistent national database although an approximation is 

found in Wildland Fire Decision Support System (WFDSS, Available online: 

https://wfdss.usgs.gov/wfdss_help/WFDSS_Help_Historical_Fire_Data.html, last 

accessed on October 2021). WFDSS is not a national official perimeters database. An 

https://frap.fire.ca.gov/
https://geo.wa.gov/
https://wfdss.usgs.gov/wfdss_help/WFDSS_Help_Historical_Fire_Data.html
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integration of guidelines agreement, time series and features among them is necessary in 

order carry out a consistent analysis. The same thing happens in Europe (EFFIS, 

Available online: https://effis.jrc.ec.europa.eu/, last accessed on October 2021) where 

the inconsistency among countries does not allow a regional study. Thereby, MTBS 

(Eidenshink et al. 2007) is preferred for use because it has more consistency, although 

less accuracy before 2000. MTBS is created to study BA severity but contains large and 

historical BA perimeters. That database, from 1984 to 2017, is developed by historical 

perimeters (fire history database compilation, 1984-2003) and Landsat, and provides 

information on fires of more than 202 ha in the east and more than 404 ha in the west. 

1.2.2 Regional BA studies 

Also, we compared our product with other studies whose data extend back previous to 

2000, and to places to which there was no other assess FireCCILT11. Several 

requirements were taken into account in order to do a consistent analysis:  

1. There must be enough time series to study trends over ten years;  

2. Some years had to be inside of MODIS years to assess its trends with MODIS 

product and check its coherence and consistency; 

3. Analysis was done in places where there were no other reliable data such as BA 

products with more time series, larger study area or official perimeters; 

4. Data available. 

Studies like Barbosa et al. 1999 in Africa (1985/1986, 1986/1987, and 1990/1991), and 

Erdenesaikhan and Erdenetuya (1999) in Mongolia (1996-1998), are discarded because 

they had a limited time series of three years, Yates et al. (2009) had a time series of less 

than ten years (1997-2005) and we had data in Australia, or Kucêra et al. (2005) 

because it (1984-2001) did not have representation beyond the MODIS era. However, 

Dubinin et al. (2010), developed with AVHRR data, was selected to compare because it 

covered an area of 19.000 km2 in the arid grasslands of southern Russia, and it extended 

twenty three years from 1985 to 2007. And the García-Lázaro et al. (2018) analysis, 

where BA estimation was performed in the Siberian Boreal Forest based on LTDR (v3, 

AVHRR and MODIS integrated), had also been used. 

2 Results 

2.1 Comparison with global BA products 

The annual global patterns of FireCCILT11 BA are compared in Figure 12 with other 

BA products (precursor product and existing MODIS-based BA datasets). The trends of 

FireCCI51, MCD64A1 and FireCCILT11 are similar in the common time series, being 

high correlation (r Pearson) values (Table 4). MCD64A-FireCCILT11 shows higher 

correlation (0.87) than FireCCI51-FireCCILT11 (0.60). Monthly values showed higher 

correlations, with r values of 0.89 (MCD64A1) and 0.95 (FireCCI51). FireCCILT11 

presents higher monthly correlation with FireCCI51 since they show more similar 

trends when analysing the data on a monthly basis (Figure 13). This is because 

FireCCILT11 has been trained monthly with FireCCI51. But the yearly data (Figure 12) 

in FireCCILT11 is more similar to MCD64A1. The DC in the common time series of 

FireCCI51-FireCCILT11 is more than 0.63 (Oe=0.21 and Ce=0.47) and the DC of 

MCD64A1-FireCCILT11 is 0.44 (Oe=0.39 and Ce=0.66). Regarding BA, FireCCILT11 

detects ≈3.5% more than FireCCI51 and ≈ 14% more than MCD64A1 in their common 

time series. FireCCILT11 estimated more BA in each year compared to MCD64A1, and 

compared to FireCCI51 detected more BA in most years, except 2004, 2005, 2007 and 

https://effis.jrc.ec.europa.eu/
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2008. The year with the largest difference between FireCCILT11 and FireCCI51 was 

2001, and FireCCILT11-MCD64A1 was 2013. The FireCCILT11 values were closer to 

FireCCI51 than MCD64A1, although the FireCCILT11 trend was softer than FireCCI51 

and MCD64A1. 

 

 

Figure 12. Annual BA (Mkm
2
) trends of MCD64A1, FireCCI51, FireCCILT10 Beta and 

FireCCILT11. 

Table 4. Annual and month correlation (r Pearson) between BA products. Month correlation 

between AVHRR2 era months and AVHRR3 era months. 

 

 

Figure 13. Monthly median trends of the products: FireCCILT11, FireCCI51 and MCD64A1, in 

the common time series. 

The performance of FireCCILT10 Beta is lower than the other products. The new 

FireCCILT11 has more stable trends and higher accuracy than the Beta product, 

particularly during AVHRR2 period (1982-2000), when FireCCILT11 was very less 

affected by the satellites’ orbital drift and the number of available observations (Table 

5), and presents realistic trends in the same way as for the following years. 

FireCCILT10 Beta shows significant peaks and unrealistic patterns. The impact of both 

the number of observations and the solar angle was clearly reduced with the new 

version of the BA algorithm, particularly for tropical areas. In fact, the median of 

monthly BA between AVHRR2- AVHRR3 period offers a very high correlation, 0.98, 

maintaining the monthly trends in the time series. 

Annually

Monthly

Monthly

FireCCILT11 1982-2000 Vs FireCCILT11 2001-2018

0,98

FireCCI51 Vs FireCCILT11 MCD64A1 Vs FireCCILT11

0,60

0,95

0,87

0,89
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The analysis of the number of observations, SZA, FireCCILT10 Beta and FireCCILT11 

is shown in Table 5. The study analyses the global, tropical and extratropical relation of 

these variables in the time series of each product where FireCCILT11 offers one more 

year. The effect of the number of observations and SZA, which hold a negative relation, 

is lower in FireCCILT11 than in FireCCIL10. The number of observations is highly 

correlated and explains much of the variability of the SZA, and presents higher values 

in extratropical regions than tropical regions in both products. The number of 

observations is less correlated than SZA regarding the BA products although the 

number of observations also has a relation with the results. The lack of observations has 

a greater effect in tropical regions, losing BA, and its effect has been diminished in the 

AVHRR2 period of FireCCILT11. SZA has a negative relation relative to BA products. 

SZA and FireCCILT10 Beta are highly related in tropical regions and specially explains 

much of the variability in the AVHRR2 period. FireCCILT11 has solved that relation, 

the variability explained is low in the AVHRR2 period. The relation is higher in 

AVHRR3 period but does not affect the BA detected according to Table 4 where the 

correlation with BA MODIS product is very high. 

Table 5. Correlation analysis (r Pearson) between the number of observations, solar angle, and the 

BA of FireCCILT10 Beta and FireCCILT11 according to Global, tropical and extratropical 

regions, and the time series of each product. Time periods are grouped as the complete time series, 

the AVHRR2 period, and the AVHRR3 period. 

FireCCILT10 beta 

#Observations vs.  
Solar Angle 

#Observations vs. BA Solar Angle vs. BA 

1982-
2017 

1982-
2000 

2001-
2017 

1982-
2017 

1982-
2000 

2001-
2017 

1982-
2017 

1982-
2000 

2001-
2017 

Global -0.90 -0.87 -0.87 0.62 0.64 0.41 -0.81 -0.89 -0.62 
Tropical -0.77 -0.59 -0.78 0.47 0.35 0.32 -0.81 -0.89 -0.61 
Extratropical -0.92 -0.91 -0.87 0.29 0.01 0.28 -0.24 0.06 -0.38 

FireCCILT11 
1982-
2018 

1982-
2000 

2001-
2018 

1982-
2018 

1982-
2000 

2001-
2018 

1982-
2018 

1982-
2000 

2001-
2018 

Global -0.82 -0.72 -0.86 0.56 0.12 0.58 -0.62 -0.23 -0.68 
Tropical -0.79 -0.65 -0.83 0.53 0.17 0.37 -0.63 -0.36 -0.62 
Extratropical -0.81 -0.71 -0.85 -0.07 -0.02 0.61 0.14 0.33 -0.54 

2.2 Regional comparison with MODIS BA products 

The comparison of the average BA products (2001-2018) in continental regions is 

shown in Table 4. Similar values were found among the MODIS products and 

FireCCILT11. FireCCILT11 is more burned in the most continental regions of the 

world. African regions offer the highest BA values in the three products, being 

FireCCILT11 higher than the MODIS products. FireCCILT11 and FireCCI51 detected 

in general a similar BA quantity, while MCD64A1 had in most cases lower values. In 

Australia, FireCCILT11 detects BA between the MODIS products although closer to 

high values of MCD64A1. Boreal regions offer equal values in BONA in the BA 

products and similar values in BOAS between FireCCI products but lower in 

MCD64A1. The lowest burned region changes among products: EQAS in 

FireCCILT11, MIDE in FireCCI51 and EURO in MCD64A1. 
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Table 6. Average BA in the continental regions for the MODIS (FireCCI51, MCD64A1) and 

AVHRR-LTDR (FireCCILT11) products in the common time series (2001-2018). Boreal North 

America (BONA), Temperate North America (TENA), Central America (CEAM), Northern 

Hemisphere South America (NHSA), Southern Hemisphere South America (SHSA), Europe 

(EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa 

(SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia 

(EQAS) and Australia and New Zealand (AUST). 

  

Continental regions 

 
 

BONA  TENA  CEAM  NHSA  SHSA  EURO  MIDE 

B
A

 (
M

km
2 ) 

FireCCI51 0,45 0,57 0,41 0,98 4,60 0,33 0,25 

MCD64A1 0,45 0,51 0,49 0,96 5,16 0,19 0,25 

FireCCILT11 0,45 0,79 0,51 1,05 5,48 0,46 0,47 

 
NHAF  SHAF  BOAS  CEAS  SEAS  EQAS  AUST 

FireCCI51 27,19 29,77 2,94 4,23 2,60 0,26 8,67 

MCD64A1 23,00 27,24 1,68 3,51 2,49 0,27 9,23 

FireCCILT11 27,37 29,85 2,77 4,66 2,79 0,32 9,20 

Figure 14 shows the temporal variation of BA in the different continental regions for the 

three BA products. Trends were similar in most of the regions in the common time 

series. BONA, NHSA, NHAF, SHAF presented analogous trend and values in the BA 

products. CEAM, BOAS, EQAS and AUST had similar trends and values with slight 

differences in isolated years or abrupt peaks where FireCCILT11 had softer trends than 

the MODIS products. In TENA, SHSA, CEAS and SEAS, FireCCILT11 detected 

similar values of the MODIS products but FireCCILT11 trends were smoother although 

they conserved the main peaks and trends. Only in regions with little burned area 

(EURO or MIDE), the estimations were different, although the trends were similar. 

Furthermore, the correlation between SZA and FireCCILT11 (Table 7) is lower or does 

not exist according to continental regions. Especially, the AVHRR2 period offers the 

lowest relations where there were the biggest effects. Tropical regions, more affected by 

SZA, have low correlations and SZA does not explain the variability in FireCCILT11. 

The AVHRR3 period has some higher relations but they are low and do not affect to the 

BA detected (Figure 14). 

Table 7. Correlation analysis (r Pearson) between the SZA and FireCCILT11 according to 

Continental regions. 

 

 

BONA TENA CEAM NHSA SHSA EURO MIDE

1982-2000 -0,22 -0,36 -0,30 -0,26 0,19 -0,22 -0,48

2001-2018 -0,42 -0,60 -0,26 -0,03 0,11 -0,32 -0,56

NHAF SHAF BOAS CEAS SEAS EQAS AUST

1982-2000 0,21 0,32 -0,06 -0,34 -0,09 0,31 0,23

2001-2018 0,38 0,31 -0,34 -0,57 0,10 0,07 0,02
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Figure 14.  Annual BA trends of MCD64A1, FireCCI51 and FireCCILT11 in the different 

continental regions (year 1994 excluded). 

2.3 Comparison with reference fire perimeters and regional BA products 

Official perimeters are compared among the BA products (MCD64A1, FireCCI51, 

FireCCILT10 Beta and FireCCI51) in Figure 15 and a correlation analysis of 

FireCCILT11 is made with these official perimeters (Table 8). Australia has the official 

perimeters with most fire occurrence. The official trends are very similar among all BA 

products except FireCCILT10 Beta. FireCCI BA products have more underestimation 

than MCD64A1 in Australia. Even so, FireCCILT11 presents a very high correlation of 

0.89 in the common time series (2000-2018). 

Canadian official perimeters offer a very similar trend in all BA products except 

FireCCILT10 Beta, and the AVHRR2 period is analogous between official perimeters 

and FireCCILT11. The correlation is high and similar in the AVHRR2 (0.85) and the 

AVHRR3 (0.84) periods. The incorporation of a Boreal model proved to be particularly 

efficient in this area, which was clearly underestimated by the beta version 

(FireCCILT10). Official Alaskan perimeters have a similar trend in all BA products 

except FireCCILT10 Beta, which is deficient in boreal regions. The trends in the 

AVHRR2 period are analogous. Some underestimation of FireCCILT11 is found in BA 

peaks of the official perimeters but the correlation is very high, 0.99 in the 2001-2018 

period and 0.91 in the 1982-2000 period. MTBS in this case, shows very high accuracy 

in the 2001-2017 period (r Pearson of 1.00) but 1984-2000 period has a lower 
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performance of 0.79. Therefore, FireCCILT11 has a high result in AVHRR2 period than 

MTBS. 

 

 

 

Figure 15. Comparison of BA trends among national official perimeters and BA products (year 

1994 excluded). 

Table 8. Correlation analysis (r Pearson) between FireCCILT11 in different regions, and the 

official perimeters and regional BA products. Time periods are grouped as the complete time series 

with official perimeters, the AVHRR2 period, and the AVHRR3 period. 

 

USA (continental without Alaska) is inter-compared only among BA products. Figure 

16 shows the BA trends where FireCCI51 and MCD64A1 are very similar; MTBS has a 

bit less detection but high correlation (0.89) with FireCCI51, and FireCCILT11 has 

more BA detected but less relation (0.71) with FireCCI51 but is still high (Table 8). 

MTBS has slightly more accuracy in the AVHRR3 period than FireCCILT11. MTBS 

and FireCCILT10 have a more similar performance in the AVHRR2 period than 

FireCCILT11, but there are no official perimeters to show the accuracy, only a higher 

value of FireCCILT11 in Alaska than MTBS in the 1982-2000 period. 

2000-2018 0,89 1982-2018 0,81 1982-2018 0,96 0,96

2000-2001 - 1982-2000 0,85 1982-2000 0,91 0,79

2001-2018 0,94 2001-2018 0,84 2001-2018 0,99 1,00

1984-2017 0,06 - - - -

1984-2000 0,41 - - - -

2001-2017 0,61 2001-2018 0,71 2001-2017 0,89

MTBS Vs FireCCILT11 FireCCI51 Vs FireCCILT11 FireCCI51 Vs MTBS

USA

1984-2017

1984-2000

2001-2017

Canada

Official perimeters Vs FireCCILT11

Australia Alaska

Official perimeters Vs MTBS

Alaska
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Figure 16. Comparison of BA trends among BA products in the US (year 1994 excluded). 

2.4 Comparison with regional BA studies 

We further compared the product with existing regional studies (Figure 17 and Table 9), 

although in this case the uncertainty was higher, as those products included also 

potential errors. In the case of the Russian republic of Kalmykia study (Dubinin et al. 

2010), BA products shows a similar trend with lower BA estimation than FireCCILT11. 

BA of Dubinin et al. (2010) has an analogous pattern of MODIS products and a related 

trend with FireCCILT11. Dubinin et al. (2010) detect less BA than FireCCILT11 but 

these studies have a high correlation in the AHVRR2 period of 0.84 and in the 

AHVRR3 period of 0.89. In the Siberia study (García-Lázaro et al. 2018), the patterns 

are very similar in the MODIS era. García-Lázaro et al. (2018) and FireCCILT11 have a 

correlation of 0.96, but the performance of each is very different in the pre-MODIS era 

where r Pearson is of 0.17. The García-Lázaro et al. (2018) study assume a fully burned 

pixel (0.05°) if it is detected, and FireCCILT11 does not, it assigns proportions. 

Therefore, García-Lázaro et al. (2018) shows a higher BA detection in the period 1982-

2000 but it has ≈70% less burned pixels than FireCCILT11. 

 

 

Figure 17. Comparison between BA products using regional studies (year 1994 excluded). 

Table 9. Correlation analysis (r Pearson) between FireCCILT11 and the regional BA studies. Time 

periods are grouped as the complete time series with regional BA studies, the AVHRR2 period, and 

the AVHRR3 period. 

 

0,841985-2000

2001-2007 0,89

1982-2000

2001-2015

0,79

0,17

0,96

0,481985-2007

Republic of Kalmykia (Southern Russia) Siberia

1982-2015
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Annex 3: Validation 

1 Validation basis 

1.1 Landsat dataset 

The validation of low resolution with high resolution is a controversial topic, since if the 

spatial resolution pixel size of high resolution is used to validate, it would generate 

unrealistic measures (Boschetti et al. 2006). Therefore, the option of high resolution 

resampled to spatial resolution pixel size of low resolution, is used to validate low-

resolution product. Low resolution has less data variance and reduced information, 

resampling high resolution decreases the variance (Justice et al. 1989) and allows a fair 

comparison. Independent reference data has to be developed to accurately assess a 

product (Justice et al. 2000). Thereby, a Landsat dataset is created satisfying the 

SAFNet boundaries (Roy et al. 2005) where BA is mapped in the common region 

between the Landsat images used, in the period between the images and masking non-

interpretable areas. Additionally, Long units (consecutive pairs of images) of Landsat 

are generated because these are more adequate in low resolution products without active 

fires to reduce the influences of temporal accuracy (Lizundia-Loiola et al. 2020; Padilla 

et al. 2018). Long unit dataset is developed in Africa in a place with the largest 

availability of images on the continent (Southeast of Angola) according to Wulder et al. 

(2016) from 1989 to 2018, and 183 images are used in total. Africa is selected because 

it is the most burned region (Lizundia-Loiola et al. 2020) and we seek a scene which is 

cloud-free as long as possible. The objective was to map the fire season, and all the 

consecutive available images are included, although it is not possible to achieve the 

same temporal coverage in all years. Some years only have 3 consecutive images 

available (1992, 1997, 2007 and 2008), others only 2 (2009 and 2012) and others, only 

one or none (before 1989, 1999, 2000 and 2010). In addition, some years have non-

interpretable areas (1998 and 2006) or Landsat 7 SLC-off gaps (2003, 2004, 2007, 

2009, 2011 and 2012). Therefore, obtaining a long-term data set of independent 

reference data has many limitations and problems. The location to be studied is 

described by large fires (Ramo et al. 2021) in the central months of the fire season but 

with a light burned signal. The first months of the fire season are characterized by small 

fires (Lizundia-Loiola et al. 2020). Despite not satisfying the CEOS-LPVS protocols, 

we use more images (183) and years (27) than other studies such as Roy et al. (2005) 

where in 11 African locations use 53 images in a single year (2001), Boschetti et al. 

(2006) use 33 Landsat scenes and images in 2000, and Roy and Boschetti (2009) use 11 

Landsat (consecutive acquisitions) in 2001. MCD64A1 validation uses a similar number 

of images in 108 Landsat scenes (consecutive acquisitions). 

1.2 Pareto Boundary 

Previous statistics (Section 0) can be misleading in low resolution if we do not have a 

reference. It may be that a high commission and omission error mean poor accuracy of a 

product but if a ground truth categorized or a high resolution also offer high values 

error, the low resolution product is demonstrating a good performance. We cannot ask 

for more accuracy in a low-resolution product than a high-resolution dataset. Therefore, 

we need a methodology that shows what we can expect from low-resolution and what 

not. Pareto boundary methodology (Boschetti et al. 2004) accomplish that function 

which is derived from the previous statistics. This method says if the accuracy of the 

product studied is due to either the performance of the algorithm or the low resolution. 

Initially, Pareto boundary is generated to binary classifications but it can be adapted to 
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proportions. In addition, that method is developed to work with the same resolutions, 

which means that high resolution should be resampled to the low resolution. High 

resolution resampled (Hr), which maintains BA proportions, is categorized in different 

BA percentages (0%, 10%, 20%, n%) and binarised (Hb, burned-unburned), dichotomy 

classifications (Hb) are obtained and are validated against High resolution resampled 

(Hr). Boundary curve is the trade-off between omission and commission error 

developed between high-resolution resampled (Hr) and the dichotomy classifications 

(Hb). A binary low-resolution (Lbr) product could never pass the boundary curve 

because its spatial resolution does not hold so much accuracy. But a low resolution 

proportion (Lr) product can in fact do it, if a performance is very accurate (Boschetti et 

al. 2004). We have done two analyses with Pareto boundary: First, low resolution (Lr) 

product is categorized (Lbr) according to proportions (0% 10%, 20%, n%) and validated 

with High resolution resampled (Hr) to learn whether our product follows a similar 

trend according to BA proportions. Secondly, low-resolution (Lr) product is validated 

with High resolution resampled (Hr) to identify the true accuracy of our product with 

reference data.  In both cases, omission and commission error are calculated. 

Pareto Boundary has been used in several studies of low resolution such as snow studies 

(Pepe et al. 2010) or BA (Anaya and Chuvieco 2012; Katagis et al. 2014; Moreno-Ruiz 

et al. 2020; Moreno-Ruiz et al. 2019; Oliva et al. 2011). 

2 Results 

Landsat dataset is used to validate as an independent reference database. That dataset is 

different according to the year and presents several limitations. Some years have a 

reduced number of images that do not allow creation of a consistent long-unit such as 

the years: 1992, 1995, 1997, 2004, 2007, 2008, 2009 and 2012. Other years have non-

interpretable areas, which reduce the study area such as 1998 or 2006. Still, other years 

(2003, 2004, 2007, 2009, 2012) have a problem in the quality of the data because Scan 

Line Corrector (SLC) failed in the Landsat 7. Despite all of this, the Landsat dataset is a 

consistent ground truth and has many years without problems, which means that it is a 

long-term validation dataset.  

Validation between Landsat dataset degraded at low resolution (0.05°) and 

FireCCILT11 is shown in Table 10. Commission errors are usually lower than omission 

errors in the time series; although both present low values, there are unbalanced years. 

The AVHRR2 period has fewer years to validate with that Landsat dataset and has the 

most unbalanced years. Relative Bias notices underestimation of BA except in some 

years with limitations, both in the AVHRR2 period and in the AVHRR3 period. The 

AVHRR2 period has more underestimation. The AVHRR3 period shows higher DC 

values than the AVHRR2 period although both have years with high DC values. Year 

1989 is the best year of the validation years in the AVHRR2 period with a high DC of 

0.63. 2014 is the best year of the time series with balanced errors around 10 and DC of 

0.87. 

The correlation in the time series between Landsat dataset and FireCCILT11 is 0.53, in 

the AVHRR2 period is 0.52 and in the AVHRR3 period is 0.72.  
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Table 10. Validation outcomes between the FireCCILT11 and the long-term degraded Landsat 

dataset. Purple represents the years when the Landsat period is lower or equal to one and a half 

months, and the long-unit is minimal (2-4 scenes Landsat); Blue is used when there are non-

interpretable areas and the study area is reduced; Yellow, when there are Landsat 7 with SLC-Off, 

and Brown when the Landsat period is lower or equal to one and a half months and there are 

Landsat 7 with SLC-Off. 

 

Pareto boundary analysis is shown in Figure 18 for all available years, except 1994. 

Hypothetical binary FireCCILT11 presents a related curve regarding to boundary curve, 

which indicates a consistent pattern according to the different percentiles of proportions. 

The detection of different proportion of burned follows the same pattern in 

FireCCILT11 as Landsat. FireCCILT11 presents errors close to the boundary curve for 

most years, improving highly a hypothetic binary FireCCILT11. FireCCILT11 never 

even has a higher error than binary FireCCILT11, showing an adequate performance of 

the proportions. Despite some years in Table 10 with high errors, Pareto boundary 

shows a high performance of the algorithm and the main cause of high errors is due to 

spatial resolution. A great example is 1996 where there is a high Omission error and 

low DC, but FireCCILT11 is beneath boundary curve, which shows a good performance 

of the algorithm. Improvement is possible for some years, bringing them closer to 

boundary curve but the performance of FireCCILT11 is high and some years are in the 

boundary curve or beneath of it. The AVHRR2 period presents results similar to the 

AVHRR3 period, and shows a high performance of the algorithm that only in Table 10 

is not possible to display. The behaviour of FireCCILT11 is higher than a dichotomy 

product, even if that is high resolution degraded. The validation of FireCCILT11 (Table 

10) and Pareto boundary methodology (Figure 18) show a consistent and coherent 

product in the whole time series. 

 

1989 1990 1991 1992 1993 1995 1996 1997 1998

Commission error 0,23 0,09 0,04 0,00 0,47 0,45 0,11 0,26 0,00

Omission error 0,47 0,57 0,74 1,00 0,40 0,96 0,90 0,95 0,90

real Bias -0,31 -0,53 -0,73 -1,00 0,13 -0,93 -0,89 -0,93 -0,90

Dice Coefficient 0,63 0,58 0,41 0,00 0,56 0,07 0,17 0,10 0,17

2001 2002 2003 2004 2005 2006 2007 2008 2009

Commission error 0,09 0,10 0,42 0,60 0,31 0,14 0,77 0,30 0,40

Omission error 0,41 0,41 0,25 0,37 0,48 0,29 0,21 0,33 0,25

real Bias -0,35 -0,34 0,30 0,57 -0,24 -0,17 2,46 -0,03 0,26

Dice Coefficient 0,72 0,71 0,66 0,49 0,60 0,78 0,36 0,69 0,67

2011 2012 2013 2014 2015 2016 2017 2018

Commission error 0,92 0,47 0,08 0,12 0,07 0,09 0,08 0,21

Omission error 0,05 0,32 0,24 0,14 0,29 0,34 0,27 0,40

real Bias 11,25 0,27 -0,17 -0,02 -0,23 -0,28 -0,20 -0,24

Dice Coefficient 0,14 0,60 0,84 0,87 0,81 0,76 0,81 0,68
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Figure 18. Pareto boundary with a long-term Landsat dataset, which is resampled at low resolution 

and binarised in percentiles of proportions (green), FireCCILT11 binarised according with 

percentiles of proportion (blue) and FireCCILT11 (brown). 
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