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SYMBOLS AND ACRONYMS 

AGB Above ground biomass density (in general) 

AGBmap Aboveground biomass density according to the map 

AGBplot In situ aboveground biomass density 

AGBref AGBplot, corrected for inventory date and if footprint < 1 ha corrected for forest fraction 

AGB* True above ground biomass density 

ALS Aerial Laser Scanning 

CCI Climate Change Initiative 

CCI-Biomass Climate Change Initiative – Biomass 

CEOS Committee on Earth Observation Satellites 

CI Confidence Interval 

CoFor Congo basin Forests AGB dataset (Ploton et al., 2020) 

DARD Data Access Requirements Document 

ECV Essential Climate Variables 

ESA European Space Agency 

IPCC Intergovernmental Panel on Climate Change 

LiDAR LIght Detection And Ranging 

LPV Land Product Validation  

MSE Mean Squared Error 

NEON National Ecological Observatory Network, USA 

PI Prediction Interval 

PVP 

RMSE 

Product Validation Plan 

Root Mean Squared Error 

SAR 

SD 

Synthetic Aperture Radar 

Standard Deviation 

SLB Sustainable Landscape Brazil 

TERN Terrestrial Ecosystem Research Network, Australia 

Var Variance 

!!"#(ℎ) Variogram model of AGB with a spatial support matching the smallest plot size used our 

analyses 

!$(ℎ) Variogram model of the residuals between AGBmap and AGBref, with a spatial support matching 

the map pixels. 
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1. Introduction 
This consolidated version of the Validation Plan aims to provide a common framework for assessing and 
reporting the accuracy of the CCI Biomass products, namely the 2010, 2017 and 2018 global biomass 
maps as well as the corresponding uncertainty layers, and to assess user appreciation of these products. 
Elaboration of the plan and the forthcoming validation itself run in parallel with ongoing Committee on 
Earth Observation Satellites (CEOS) cal/val development, which provides opportunities for co-creation 
of the CEOS cal/val procedure. We further build on the results of the GlobBiomass project (Avitabile et 
al. 2015, Rozendaal et al. 2017).  
The framework consists of five main activities that jointly lead to the achievement of the validation 
objectives, as shown in Figure 1. 

 

Figure 1. Validation objectives (left) and derived validation activities (right). 

As with its predecessors (de Bruin et al. 2019a, de Bruin et al. 2020a), this Product Validation Plan (PVP) 
is developed in line with the current draft of the new CEOS Land Product Validation (LPV) protocol for 
biomass from space calibration and validation. The new CEOS protocol contains a dedicated section 
about using existing in situ data as reference for the validation of larger area biomass maps, assuming 
they are properly screened, processed and harmonized. It is recognized that different users including 
national inventory experts, global climate modelers and local project implementers all have specific 
needs when it comes to biomass estimation and uncertainty assessment with respect to spatial 
resolution, geographic extent, timing, thematic content and definitions, and type and standards of 
uncertainty reporting. The CCI Biomass project and its climate users are also interested in spatially 
explicit assessments of map precision and map bias in addition to the more standard accuracy analysis 
undertaken for biomass map validation exercises.  
This requires an effort to include a large number of in situ data sources covering all major geographical 
regions and forest types (top box on the right of Figure 1). The main data sources of forest biomass 
information include National Forest Inventories (NFIs), research forest plot networks and operational 
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monitoring stations established for forestry, ecology or environmental purposes, including those that 
use local LIDAR observations to provide biomass reference data. 
The second box from the top at the right-hand side of Figure 1 indicates that a common set of data 
harmonization and analysis methods and tools is developed and used. To support wider use, these are 
provided in the form of an R-package that allows the climate change community (both within and 
outside the project) to assess biomass maps based on their own reference data, without the need to 
upload those data to an external database. 
The centre box at the right-hand side of Figure 1 refers to in situ data selection from the database, based 
on a set of quality criteria. The box further denotes data harmonization to adjust for partial forest cover 
of map pixels and allowable (< 10 years) temporal mismatches between the map reference year and the 
in situ AGB inventory date. 
Map-plot comparison (fourth box from the top in Figure 1) concerns statistical assessment of differences 
between map and in situ above ground biomass (AGB) over reference AGB ranges. The assessments are 
performed at the map pixel level, as well as spatially aggregated over larger pixel blocks. They are also 
differentiated over ecoregions, realms1 and slope and aspect classes which have been found to affect 
AGB retrieval from satellite data (e.g., Réjou-Méchain et al. 2019). The aims of the map-plot 
comparisons are to assess whether the biomass map satisfies design specifications (relative error of less 
than 20% where AGB exceeds 50 Mg ha-1) and provide map producers with information on how and 
where to improve their products. It is important to realize that the reference data are also estimates 
and therefore affected by errors that should be taken into account when using them in the map-plot 
comparisons (Réjou-Méchain et al. 2017, Réjou-Méchain et al. 2019). This is indicated by the short 
upward arrow in the bottom-right of Figure 1. 
During the CCI Biomass User Workshops and later communications, the climate, carbon cycle and 
REDD+ communities expressed the need for unbiased biomass estimates accompanied by spatially 
explicit uncertainty information at spatial resolutions ranging from the 1 ha resolution of CCI Biomass 
up to 0.5 or even 1-degree cells (for climate modelling) or countries (for REDD+) (Quegan and Ciais 
2018). Hence, CCI Biomass product validation should explicitly address estimation of systematic 
deviations and random differences between reference and map biomass and uncertainty assessment 
at different spatial aggregation levels. This is indicated by the box at the bottom-right of Figure 1. 
Details on the approaches are provided in later chapters of this validation plan. 
  

 
1 Biogeographic realms are large spatial regions within which ecosystems share a broadly similar biological evolutionary history. 
Eight terrestrial biogeographic realms are typically recognized, corresponding roughly to continents. See Dinerstein, et al. 
(2017). 
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2. Concepts 

2.1. Definitions 

Accuracy is only occasionally used in this document to qualitatively refer to both random and systematic 
error. This use of the term is in line with the ISO 5725 definition of accuracy. 
Bias expresses the degree to which the expected value of an estimator differs from the true underlying 
quantitative parameter being estimated.  
Error. For a continuous variable such as AGB, error is defined as the difference between our 
representation of reality (e.g., a mapped AGB value) and reality (e.g., a true AGB value). We can only 
know error at some locations, if at all, because we rely on scarce reference values (e.g., from plots) 
which themselves are estimates of reality. Therefore, we will often refer to differences or residuals 
between mapped AGB values and reference AGB.  
Precision denotes the dispersion of random errors; it is expressed by measures of statistical variability 
such as variance and standard deviation. 
Stability. According to the World Meteorological Organization (2011), stability is the extent to which the 
error of a product remains constant over a long period longer period of time. 
Systematic deviation of biomass refers to a systematic difference between predicted biomass (on the 
map) and reference biomass obtained from plot data. Only if plot data (which themselves are estimates) 
are unbiased, systematic deviation would equal bias. We assume plot data to be unbiased. 
Uncertainty is a quantitative acknowledgement of error: we are aware that our representation differs 
from reality, but we are only able to model the distribution of error (expressed by a probability 
distribution), rather than the error itself. This is a common situation, because if we knew error, we would 
simply correct for it and reduce the error to zero. 

2.2. Statistics 

Table 1 lists the statistics used in this PVP, as well as their definitions, where E is the expected value, Z 
denotes a random variable, ! is the mean of Z, Y is a vector of n reference values, "#  is a vector of n 
predicted values (i.e., CCI-Biomass predictions), and h denotes a distance between two locations x.  
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Table 1. Statistics used in this PVP. 

Acron. Name Description Definition 

Var Variance Measure of spread of a random 
variable (Z) 

%&'(() = E[(( − -)%] 

SD Standard deviation Measure of spread of a random 
variable; square root of the 
variance 

/0(() = 	2%&'(() 

di Observed 
difference 

Difference between a predicted 
value, 34&and a reference value, 
3&, where i refers to a particular 
instance, e.g., a location. 

5& = 34& −	3& 

MD Mean difference Average difference between 
reference values and predicted 
values 

60 =
1
89 5&

'

&()
 

MSD Mean squared 
difference 

Average squared difference 
between reference values and 
predicted values 

6/0 =
1
89 5&%

'

&()
 

RMSD Root mean 
squared difference 

Square root of MSD :6/0 =	√6/0 

CI Confidence 
interval 

Measure of uncertainty 
associated with a sample 
population estimate (e.g., !); 
intervals covering individual 
observations commonly referred 
to as prediction intervals (see 
below). 

Estimated range of values likely to include 
an unknown population property.  

PI Prediction interval Measure of uncertainty 
associated with the prediction of 
single observations 

Estimated range in which a new 
observation falls, with a certain 
probability, given an existing model 

!(ℎ) (Semi)variogram Function describing the degree 
of spatial dependence of a 
spatial random field, where < is 
a spatial position and ℎ is a 
distance lag 

!(ℎ) = 	
1
2%&'[(

(<) − ((< + ℎ)] 

$!,#  Spatial covariance Element of the spatial 
covariance matrix, Σ, where i 
and j (1… n) refer to pixels 
within a spatial unit 

$!,# = E[((*) − E(((*)] ∙ 	E[((* + ℎ)
− E(((* + ℎ)],	 
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3. Database compilation 

3.1. Sources of reference data 

Building upon the GlobBiomass reference database (Rozendaal et al. 2017), an extensive dataset of 
forest in situ data across the world has been acquired for the purpose of the validation (see Appendix 
1, Figure 2 and also the DARD (Lucas, et al., 2020)). Plots included in the database undergo a series of 
quality checks (see below). In situ forest data were not used for calibration of the CCI Biomass map to 
guarantee full independence from the production process and because the project’s biomass map 
processing chain does not rely on such calibration procedure.  
The following in situ data selection criteria are used for CCI Biomass product validation. In situ data 
need: 

• A proper citable reference source and metadata to assess the procedures and quality of biomass 
estimation. 

• Precise coordinates (4-6 decimals for coordinates in decimal degrees).  

• A census date within ten years from the reference year of the AGB map to avoid temporal 
inconsistency with the assessed maps. 

• Measurements of all trees of diameter ≥ 10 cm (or less) are included in the estimates.  

• Sites that were not deforested between the year of the inventory and the reference year of the CCI 
Biomass map (i.e., 2010, 2017 and 2018). The latter assessment is based on the 2018 forest loss 
layer of the Hansen dataset (Hansen et al., 2013). 

• LiDAR-derived AGB or other indirect AGB data, with these accompanied by estimates of the 
standard deviation of AGB error. 

Note that the current data agreements will have to be renewed and new agreements will have to be 
established. 

3.2. Sampling design 

We rely on AGB in situ data that are not specifically produced for validation purposes but that are rather 
collected within the context of national forest inventories and other efforts at local to regional scale. 
This has several consequences, which are summarised as follows: 

• The populations of the CCI Biomass products and those of the inventories differ. CCI Biomass 
concerns forest biomass over the entire globe (including areas without forest), whereas forest 
inventories typically only concern forested areas within countries or regions. Moreover, large 
portions of the world including Southeast Asia, large parts of Africa, the dry tropics and Siberia 
have very little or no in situ data at all (see Figure 2). 

• The sampling frames are different: CCI Biomass concerns mean forest biomass density discretised 
in ~100m × 100m pixels (including non-forested area) while the inventories employ non-uniformly 
sized and typically small plots (on average 0.15 ha for the AGB plot data referred to in Appendix 1) 
within forested areas. 
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• Regionally, the AGB plot locations may have been chosen by probability sampling but large areas 
of the world are not included in the AGB plot sample (see first bullet). That is because in these 
areas there are no forest inventories or because institutions or authorities are unwilling to share 
inventory data. 

• The wide variety of sampling designs included in the AGB in situ dataset produces a complex 
amalgamated sample. 

Given the above, our approach is to consider the AGB in situ data with its mix of plot sizes or footprints 
and local sampling designs as an opportunistic sample (also referred to as an ad hoc sample by other 
authors). Such sampling invalidates conventional statistical inference methods unless particular 
assumptions are made (see section 4.1).  
Additionally, a model-based approach is adopted here, with the model parameters estimated from the 
in situ data along with other data sources (see section 5.2). Absence of in situ data in large portions of 
the world forces us to apply model parameters (trend models of systematic deviation and correlograms) 
estimated for ecological zones or continents in areas where they cannot be verified but which are 
assumed to have similar characteristics. 

3.3. Tiers of plot data and other in situ data 

The contributions of AGB measurement error and within-pixel sampling error (see section 5.1) are 
known to be largest for small plots such as National Forest Inventory (NFI) plots, while detailed 
measurements of all trees within large plots are deemed to deliver highest quality AGB data (Réjou-
Méchain et al. 2014, Réjou-Méchain et al. 2019).  
A straightforward approach for taking into account expected differences in the accuracy of plot data is 
to adopt a tiered approach comprising (tier 1) small plots (≤ 0.6 ha) including National Forest Inventory 
(NFI) data, (tier 2) larger plots with sizes in the range 0.9-3 ha, and (tier 3) high-quality large super-plots 
(≥ 6 ha; such as from Labrière et al. (2018)).  
In addition to the above tiered plot data, we use LiDAR-based AGB data at 100 m resolution from the 
Sustainable Landscape Brazil project (SLB), the National Ecological Observatory Network, USA (NEON) 
and the Terrestrial Ecosystem Research Network, Australia (TERN) processed by Labrière and Chave 
(2020a, b, c). Yet another data source concerns 1-km pixel forest management inventory data 
originating from the Congo basin Forests AGB (CoFor) dataset (Ploton et al., 2020). Concerning the latter 
dataset, only pixels having at least five in situ forest management inventoried plots are proposed to be 
used. 

These tiered plot data, the LiDAR and the CoFor data are analysed separately in the descriptive plot-
pixel comparisons (section 4.2). 
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Figure 2. Geographical locations of plots and footprints (CoFor and LiDAR) of the reference 
datasets collected up to January 2021. 
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3.4. Data harmonization 

For AGB product validation, the response design encompasses all steps leading to the assessment of 
differences between map and plot AGB (cf. (Olofsson et al. 2014). The plots used in our comparison may 
have been surveyed at a different time than the map to be assessed, they typically differ in spatial 
support (i.e., the area covered by individual plots) from the AGB map (AGBmap) pixels and they measure 
different spatial entities (average biomass over a pixel area versus forest biomass within a forest plot). 
Therefore, data harmonization is needed prior to the analysis of differences.  
Differences between the inventory date of AGB plots and the reference year of the AGB map are 
harmonized using updated IPCC growth rates (IPCC 2019, Requena Suarez et al. 2019) following the 
approach described in Version 1 of the PVP (de Bruin et al. 2019a). For plots in tropical and subtropical 
ecological zones, age category dependent growth rates are available (IPCC 2019, Requena Suarez et al. 
2019). In those cases, plot AGB values in the range 0-99 Mg/ha are assumed to represent young 
secondary forest. AGB values in the range 100-152 Mg/ha are treated as old secondary forest (Van 
Breugel et al. 2007), AGB above 153 Mg/ha is assumed to correspond to old growth stands (Brown et 
al. 1989, Clark and Clark 2000, Mello et al. 2016). Given the absence of data on plot forest age, mature 
forests with low AGB cannot be distinguished from young stands, which has potential implications for 
the applied growth rates. For temperate oceanic forests in Europe and boreal coniferous forests and 
tundra woodlands, no differentiation of growth rates over age categories is used. The temporal 
adjustments by growth rates are applied up to a difference of ten years between the inventory date and 
the map reference year. Plots having a larger temporal difference are discarded in the analyses (see 
section 3.1). The growth rate table in IPCC (2019) also reports different types of uncertainty estimates, 
such as confidence intervals (CI). The latter are translated into variances assuming a normal distribution.  
Recall that the AGB plot data and the map have distinct sampling populations (see section 3.2) in terms 
of both different spatial support and the inclusion of non-forested areas within map pixels. 
Harmonization of these differences is attempted by multiplying the temporally adjusted plot AGB by 
forest fraction. This forest fraction is computed by putting a 10% threshold on a tree cover product 
(Hansen et al. 2013) corresponding to the CCI Biomass map reference year. This is undertaken both at 
pixel level and over larger aggregated blocks. In the rare case of more than one AGB plot occurring 
within a pixel, the average of the adjusted AGB per plot is used. The correction for forest fraction is 
applied only to plots with an area below 1 ha. 
The data harmonization procedure is pictured in Figure 3. The reference AGB obtained (either at pixel 
level or over aggregated pixel blocks) is referred to as AGBref. 
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Figure 3. Overview of data harmonization steps.  
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4. Map-plot comparisons 

4.1. Assumptions 

After adjustments for temporal discrepancies and partial forest fraction and having at least ten in situ 
sites within a reference biomass range, we assume mean AGBref computed from the reference data in 
tiers 1 and 2 to be unbiased. For tier 3 data (section 3.3), we relax the requirement of 10 plots per 
biomass range because these data were recorded over large footprints (≥ 6 ha) and the measurements 
followed a strict protocol. 
When reporting mean differences, AGBmap - AGBref, and root mean squared difference (RMSD) over 
spatial strata (see section 4.3) we assume that comparisons of map and in situ data within strata are 
representative of those strata. For the descriptive analyses (section 4.2) it is further assumed that map-
plot comparisons are mutually independent but, in the proposed geostatistical approaches (chapter 5), 
this assumption is relaxed. 

4.2. Descriptive analyses 

For tabulation, 50 Mg/ha wide AGBref bins are used up to 400 Mg/ha, while AGBref values above 400 
Mg/ha are grouped in a single bin, i.e., 0-50, 50-100 … 350-400 and > 400 Mg/ha. For each bin, the 
tables list at least the mean AGBref, mean AGBmap, mean AGBmap - AGBref (MD), and the RMSD between 
AGBref and AGBmap.  
For plotting, 25 Mg/ha wide bins are used up to 350 Mg/ha along with a single bin for all higher AGBref 
values. The plots have AGBref on the x-axis and AGBmap on the y-axis. Mean (AGBref, AGBmap) pairs are 
shown using a point symbol while the interquartile ranges of AGBmap per bin are depicted by whiskers. 
An example is shown in Figure 4. 

 
Figure 4. Example of a AGBmap - AGBref comparison plot taken from de Bruin et al. (2020b). 

A straightforward way of analysing AGBmap - AGBref differences was anticipated in section 3.3. To account 
for the expected differences in the accuracy of plots in different size categories, plots in different tiers 
can be analysed separately. Under the above unbiasedness assumption (section 4.1), mean differences 
between harmonized in situ data and map values aggregated over bins covering ranges of reference 
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AGB values are interpreted as map bias, per tier. However, note that binning of in situ data affected by 
random errors may falsely suggest map bias. This has been demonstrated for the within-pixel sampling 
error in the latest PVIR (de Bruin et al., 2020b, Figures 17 and 18). To empirically verify the assumption 
of unbiased in situ data, the analyses are conducted for each of the tiers other data sources and 
consistency of results is assessed whenever data volume allows this. 
An alternative to the tiered approach is to weight AGBmap - AGBref differences within bins using inverse 
variance weighting based on the sum of the in situ measurement error variance, the variance of the 
error introduced at the data harmonization steps (section 4.2.1), and the plot-pixel sampling error. 
These error variances are explained in section 5.1. Such an approach is only possible if sufficient data 
are available for assessing spatial correlation structures of the latter error component for the smallest 
footprint size. 
In case weighted (AGBref, AGBmap) pairs are computed, weighted quantiles and RMSD are also used for 
tabulation and plotting. 

4.3. Stratification and spatial aggregation 

4.3.1. Comparisons at 0.1° cell resolution  

Depending on how data are used, biomass map users (e.g., climate modellers and REDD+ communities) 
may be interested in uncertainties over larger support units, such as square pixel blocks (Quegan and 
Ciais 2018). Aggregation of biomass predictions and measurements over larger spatial units often results 
in a partial cancelling out of random prediction errors and measurement errors. Note that this does not 
hold for systematic error or bias. Therefore, aggregation is expected to improve the precision of map 
and harmonized plot data if both map and multi-plot data are averaged over larger spatial units.  
To assess the CCI Biomass map at a resolution commonly used by climate modellers, AGBmap - AGBref 
comparisons are also made over multi-pixel blocks at the 0.1° cell resolution. In this case, correction for 
partial forest fraction (see above) is undertaken at the level of the coarse resolution cells. Mean AGBref 
at 0.1° cell resolution is computed by multiplying forest fraction at the 0.1° cell level with the mean 
temporally adjusted AGB plots in that cell (see Figure 3).  
Three options are considered for calculating the latter mean temporally adjusted AGB at the 0.1° cell 
level. 

• Using unweighted means for each of the tiers and other data sources (LiDAR/CoFoR) separately (cf. 
section 4.2). 

• Inverse variance weighting of in situ data based on the sum of the AGB measurement error variance, 
the variance of the error introduced at the data harmonization steps (section 3.4), and the within-
pixel sampling error. This option still assumes mutual independence of plot data but explicitly 
accounts for different quality plot data. 

• Relaxing the mutual independence of in situ data, another option is to compute block averages by 
a block kriging approach (Goovaerts 1999, Malone et al. 2013).  

Our aim is to compare the above options but the latter two are only feasible if sufficient data are 
available for assessing spatial correlation structures (variograms !!"#(ℎ)) of AGB for the smallest plot 
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size used in the analyses. The thus obtained AGB reference values are compared with the average 
AGBmap over the corresponding 0.1° cells.  

4.3.2. Ecoregions 

AGBmap – AGBref comparisons at 0.1° cell resolution (see above) are also stratified according to 
ecoregions derived from the recent global ecoregion map (Dinerstein et al. 2017), which can be 
downloaded from https://ecoregions2017.appspot.com/. To this end, the original vector maps are 
rasterized to 0.1° resolution. Resulting raster cells are assigned to the category covering the largest 
portion of the cell area. 
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5. Spatial uncertainty modelling 

5.1. Definition of the error model 

Even though the in situ AGB data are assumed unbiased, they are not error-free and therefore 
comparisons between AGB maps and AGB in situ data should be accompanied by an uncertainty 
analysis. The first step in such analysis is definition of the error model. We propose an additive model 
expressing the difference between a map prediction AGBmap and reference AGBref at pixel x (denoted as 
D(x)) as a random variable composed of five zero mean random error components and a map bias 
component (Equation 1): 

3(*) = 4(*) − 5678(*) + 69:(*) + 	;(*)< + =(*) + 	>(*)    (1) 

where 4(*) the map biomass error at location x, 678(*) is the plot measurement error (Réjou-Méchain 
et al. 2017), 69:(*) is a positional error component, ;(*) is the error introduced at the data 
harmonization steps (section 3.4), =(*) is a within-pixel sampling error component, and >(*)) is the 
map bias, i.e., the difference AGBmap(x) – AGB*(x), where the latter term is the true biomass density for 
pixel x. The within-pixel sampling error, =(*), arises because the AGB plot size is usually small compared 
to the ~1 ha AGB map pixel (see Appendix 1). It is defined as AGB*(x) – AGB*

plot(x), where the latter term 
is the true biomass at the spatial support of in situ data within the pixel. A pixel footprint covered by a 
homogeneous forest biomass population has sub-pixel biomass variation, and the plot samples only part 
of that. Pixel footprints partly covered with forest undergo a harmonization procedure as explained in 
section 3.4. Note that =(*), 678(*), 69:(*), =(*) and ;(*) are random variables whose values are 
unknown but can be described by probability distributions (Heuvelink, 2005). 
All random error terms at the right-hand side of Equation (1) (i.e., all terms except >(*)) are assumed 
to be zero mean and mutually uncorrelated. If the plot has small size relative to the pixel, 69:(*) is not 
relevant unless the plot is at the edge of the pixel; all that matters is that it is located within the pixel. 
Earlier analyses using a conservative distance decay function for sampling map-plot residuals revealed 
that indeed 69:(*) is small compared to the other error components. Omitting 69:(*), the variance 
of difference between a map prediction AGBmap and reference AGBref at pixel x equals the sum of the 
remaining error variances (Equation 2): 

?@A(3(*)) = ?@A(4(*)) + ?@A(678(*)) + ?@A(=(*)) + ?@A(;(*))  (2) 

In our geostatistical modelling, we consider spatial correlation of 4(*), because errors in the AGB maps 
can be spatially correlated and we need to account for this in our model-based inference. We take into 
account this spatial correlation for purposes of assessing the joint AGB uncertainty when aggregating 
map data to larger support units, such as pixel blocks, countries or other regions of interest. Spatial 
correlation of 4(*) is modelled using biome-specific variograms, !$(ℎ) of scaled residuals, where h 
refers to a distance lag and –if necessary– the residuals are scaled by the standard deviations provided 
in the uncertainty layer accompanying the AGB map. Those (scaled) residuals are assumed second order 
stationary per biome. 
We aim to model the bias >(*) as a function of AGBmap and other spatially exhaustive covariates, as 
described in section 5.3.1.  
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5.2. Identification of the error model 

5.2.1. Overview 

Table 2 provides an overview of the approaches for estimating the parameters of the uncertainty model 
described above. First results confirm an inverse relationship between %&'(?@A(<)) and plot size, while 
>(*) is often positive when the predicted AGB value is small (i.e., low AGBmap values tend to exceed 
AGBref) and negative when they are large (i.e., high AGBmap values in the map tend to be less than AGBref).  

Table 2. Estimation methods for the parameters of the uncertainty model. 

Component Estimation approach 

b(x) Modelled as a function of AGBmap and spatially exhaustive covariates such as biome 
(Dinerstein et al. 2017), topographic variables and proxies for anthropogenic activity, using 
a random forest model (Breiman 2001) trained on observed differences, di, between AGBmap 
and AGBref data. 

%&'(6(<)) Square of the SD of the (zero mean) prediction error accompanying the CCI Biomass maps, 
as described in Quegan et al., (2017) and Santoro and Cartus (2019). 

%&'(?@A(<)) For a subset of plots having individual tree measurements, (Réjou-Méchain et al. 2017) 
biomass R-package is used. For other plots lacking such data, %&'B?@A(<)C is predicted by a 
random forest model trained on the subset having individual tree measurements, using 
AGBmap, plot size and biomes as explanatory variables. 

%&'(/(<)) Var(AGB*pixel – AGB*plot) = Var(AGB*pixel) + Var(AGB*plot) - 2∙σ AGB*pixel, AGB*plot, where 
σ AGB*pixel, AGB*plot is the covariance of AGB*pixel and AGB*plot. All terms on the right-hand 
side of this equation are obtained from variograms of small, contiguously clustered sites 
within relevant Biomes, using change of support geostatistics (Goovaerts 1999, Malone et 
al. 2013). If nearby sites have different inventory dates, temporal adjustment to a common 
date is required, as described in section 3.4. 

%&'(D(<)) Variance of mathematical operations applied to random variables in the harmonization 
steps.  

B$%&(ℎ) Variogram model fitted to experimental semivariances of AGB with a spatial support of the 
smallest plot size used. Used data are small-plot AGBplot data, LiDAR -derived AGB or 
AGBplot from larger plots, followed by deconvolution using a nugget-sill ratio borrowed 
from LiDAR data. Following Christensen (2011), the mean of %&'B?@A(<)C is subtracted 
from the nugget. 

B'(ℎ) Variogram model fitted to experimental semivariances of (scaled) residuals between 
AGBmap and AGBref after subtracting the bias b(x). This variogram has a spatial support of 
map pixels. To correct for the other error sources, the mean variances 
%&'B?@A(<)C, %&'B/(<)C	and	%&'(D(<)) are subtracted from the nugget, following 
Christensen (2011). Scaling of the residuals may be needed to transform M(x) to 
homoscedacity (see sections 5.1 and 5.2.3). 

5.2.2. Variograms of AGB from small plots  

As shown in Table 2, prediction of %&'B/(<)C requires variograms of AGB from small, contiguously 
clustered sites located within relevant biomes (!$(ℎ)). At the stage of writing, we have access to limited 
data from research plots and clustered NFI plots as well as LiDAR-derived AGB data from small footprints 
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acquired over two forest sites in Remningstorp, Sweden, and Lope, Gabon, i.e., a boreal and a tropical 
forest site. The latter ALS datasets were acquired in the framework of the airborne ESA BIOSAR (Ulander 
et al., 2011). We still lack data for several biomes and expect these will be gathered in cooperation with 
WP1. Otherwise, we will apply variograms over broader geographical regions for which they are deemed 
appropriate. 
Subplots from research plots are often larger (0.25ha) than the smallest plots of our dataset (a few plots 
are only 0.01ha). Variograms at the smallest support size will be obtained by variogram deconvolution 
(Goovaerts 2008) with a fixed nugget/sill ratio obtained from fine resolution AGB data, such as LiDAR-
derived AGB. Following Christensen (2011), the mean variance of the plot measurement error is 
subtracted from the nugget variance. 

5.2.3. Variograms of map error at the spatial support of map pixels  

Spatial aggregation of uncertainty over larger support units (see section 5.3.4) requires variograms of 
6(∙) at pixel support (!$(ℎ)). The uncertainty layer of the CCI Biomass maps and the other uncertainties 
considered in section 5.1 acknowledge that we expect Var(D(x)) to vary over space (i.e., it is 
heteroscedastic). In other words, we recognize that at some locations, larger deviations between 
AGBmap and AGBref are more likely to occur than at other locations. If necessary, observed realizations 
of D(x) – b(x) are scaled by C?@A(4(*)) aiming to achieve homoscedasticity. Again, the (Christensen 
2011) approach for heterogeneous measurement error variances will be used for estimating the 
variogram of the unobserved 6(∙) at pixel support, using estimated values for each error component as 
listed in Table 2. 

5.3. Model-based prediction 

5.3.1. Bias trend prediction 

Different forest types, climatic gradients, topography and AGB itself have been found to affect bias in 
biomass predictions (Chave et al. 2004, Rodríguez-Veiga et al. 2019, Santoro et al. 2015). We try to 
model this bias as a function of AGBmap and its textural properties as well as other spatially exhaustive 
covariates such as biome (Dinerstein et al. 2017), topographic variables (elevation, slope), canopy height 
and a proxy for anthropogenic activity (population density) using a random forest model (Breiman 
2001). The approach is documented in more detail in Araza et al. (forthcoming). 
The predictive power of the covariates is evaluated using variable importance measures while sensitivity 
of the modelled trends to its inputs is assessed using partial dependence plots (Greenwell 2017). If 
fitting the bias trend model is successful, the random forest model is used in predictive mode to predict 
a global bias layer b(x). Statistical significance of predicted bias is assessed using the prediction standard 
errors obtained with Wager’s et al. (2014) infinitesimal jack-knife approach.  

5.3.2. Error budgeting 

The error model presented in section 5.1 allows comparison of %&'(0(<)) observed over AGBref bins 
with the sum of the error variances at the right-hand side of Equation (2). In de Bruin et al. (2019b, 
2020b), a similar partial comparison was used to assess whether the uncertainty layer provided with the 
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CCI Biomass map is consistent with considered error variances. This comparison can only be completed 
if the error model has been fully identified (section 5.2). 

5.3.3. Block kriging for map-plot comparison at supra pixel support 

Section 4.3.1 referred to a third option for computing the mean temporally adjusted AGBref at the spatial 
support of 0.1° cells by block kriging. This is achieved by computing block averages of AGB from within-
block and nearby temporally adjusted plot AGB using the small plot variograms introduced in section 
5.2.2 and block kriging that accounts for different error variances of the plot data (Malone et al. 2013). 
The procedure also computes the variance of the prediction error. Correcting for forest fraction (section 
3.4), AGBref at 0.1° cell level is obtained, which is compared with the average AGBmap over the 0.1° cell. 
It is repeated here that this procedure is only possible if variograms of AGB at the spatial support of the 
smallest plots are available for the different forest types. 

5.3.4. Spatial aggregation of random error 

Spatially uncorrelated zero-mean errors tend to cancel out when aggregating over larger spatial units, 
but this effect is less pronounced when errors are spatially correlated. We model the latter effect using 
the variograms introduced in section 5.2.3. From the variograms and the distance matrix for all pixel 
pairs, xi, xj contained in a support unit, a covariance matrix, Σ, is computed with elements $!,#. The 
variance of the map error over the support unit is then predicted by summing the elements of Σ and 
division by n2 (Equation 3): 

?@A(@EEA) = 	 ()!∑ ∑ $!,#)
#*(

)
!*(        (3) 
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6. Map inter-comparison 

6.1. Stability of AGBmap – AGBref among CCI Biomass products 

According to the World Meteorological Organization (2011), stability is the extent to which the error of 
a product remains constant over a long period of time. To explore local stability of plot-map differences 
(di) over the three AGB epochs produced within the CCI Biomass project, we suggest to produce 
scatterplots of di for each combination of map reference years, as exemplified in Figure 6. 

The map producer may want to know where the largest instabilities in the residuals occur. Such 
information can be provided by plotting the locations of chosen tails of the distribution of differences 
in di for different combinations of reference years (e.g., the 5% sites with the most negative differences 
and the sites of the 5% largest positive differences). Alternatively, sites where the instability exceeds a 
particular threshold (e.g., 10%, as proposed by the World Meteorological Organization2) can be of 
interest. 

  

 

 

Figure 5. AGB residuals between harmonized tier1-3 plot data and mapped AGB at 0.1° cell 
level for each combination of map reference years. The red dashed line is the 1:1 line. 

 

 
2 https://gcos.wmo.int/en/essential-climate-variables/biomass/ecv-requirements  
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6.2. Comparison of CCI Biomass maps with other AGB products 

This task consists of the comparison of the CCI Biomass maps with other AGB products covering a given 
geographic extent, as well as comparison of map bias based on AGB reference data. The comparison 
aims to complement product validation with the following information: evaluation of consistency 
between different products; identification of areas with larger disagreements and assessment of 
whether these areas need further study; assessment of strengths and weaknesses of different datasets 
based on the analysis of the data and methods used to produce the maps; and increased awareness and 
acceptance of CCI Biomass products within the international community. 
The map inter-comparison involves the following steps. Firstly, datasets to be compared (i.e., regional 
or global maps) are identified and acquired. Secondly, the datasets are harmonized with CCI Biomass 
maps in terms of spatial and temporal support (see section 3.4) as well as thematic content (e.g., 
biomass unit). Thirdly, the following comparison metrics are computed at pixel level and at aggregated 
grid resolution (e.g., 0.1°):  

1. Comparison statistics, global and over continents and ecological zones:  
• Mean (absolute) difference 
• Histogram of differences 
• Root Mean Square Difference 
• Linear correlation 

2. Comparison maps:  
• Difference maps 
• Relative difference maps, using the CCI Biomass maps as reference 

3. Comparison plots of mapped data:  
• Scatterplots or whisker plots such as exemplified in Figure 6. 
• Histograms and cumulative distributions 

4. Comparison plots of mapped data against harmonized AGB plot data, such as exemplified in 
Figure 6. 

 
Figure 6. Example comparison of different global biomass maps (Baccini, GOCARBON and 

GlobBiomass) against harmonized plot data. 
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7. Expert assessment 
The Expert Assessment is an essential quality control and feedback mechanism, aimed at assessing the 
users’ acceptance of CCI Biomass products, evaluating their quality and limitations from the users’ 
perspective, and obtaining recommendations for improvements. The output of the user assessment 
consists of an Expert Survey report. 
The user assessment is performed using standard questionnaires, which are produced for each CCI 
Biomass product and will be sent to users within and beyond the project consortium. The questionnaires 
aim to assess: 

• User satisfaction 
• Product usability 
• Delivery system (timing, delivery method, naming, format, etc.) 
• Product quality and limitations related to spatial and temporal resolution 
• Applicability of the products for climate modelling 
• Need of capacity building (optional) 
• Future data and product requirements 
 

 

Figure 7. Screenshot of a prototype analysis tool provided with the R package for expert 
assessment. 

 
To support users in assessing the CCI Biomass products using their own data, an R-workflow is being 
implemented in tools intended for distinct user groups: (1) an online interactive tool for occasional 



 

Ref CCI Biomass Product Validation Plan v3 

 

Issue Page Date 

1.0 26 25-01-2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

users, which provides easy access to the analysis methods described in this validation plan, and (2) an 
offline toolbox for technical users who want to integrate the analysis methods in their own workflow, 
i.e., third parties who conduct independent validation. Figure 7 shows a screenshot of a prototype the 
online interactive tool; the local version can be found at:  
https://github.com/arnanaraza/PlotToMap_Local. The local version has been tested by users from the 
University of Leicester, Forest Research and the World Resources Institute.  

The main functionalities of the R workflow include pre-processing of different forest inventory 
configurations (e.g., plot shapes), estimation of measurement error for plot data with and without tree-
level measurement and visualization of plot-to-map comparisons.  
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APPENDIX 1. Plot data used for validating CCI Biomass products. 

ID Tier Average 
year 

Average 
size (ha)  Count Biome URL 

Paper/ 
source 

Data access 

AFR_L 3 2011 25.00  1 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

EU_FOS 3 2014 16.25  1 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

SAM_L 3 2010 7.65  20 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

AUS1 3 2009 25.00  1 Tropical dry forest http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library  (Paul et al., 2016) source-WUR 
agreement 

SAM_RF 3 2008 5.3 10 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor Lopez-Gonzales 
et al., 2011 

Open 

AFR_FOS 2 2013 1.00  44 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AFR_L 2 2016 1.00  56 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

AUS_FOS 2 2008 1.00  2 Tropical dry forest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

CAM_FOS 2 2012 1.01  18 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

EU_FOS 2 2010 2.23  2 Boreal coniferous 
forest 

https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

SAM_FOS 2 2011 1.00  23 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

SAM_L 2 2013 1.04  28 Tropical rainforest https://dspace.stir.ac.uk/retrieve/74d3b352-fa46-418f-ba95-728bb33f4cfc/08417912.pdf 

(Labrière et al., 
2018) open 

SAM_BAJ 2 2017 1 3 Tropical rainforest https://ieeexplore.ieee.org/abstract/document/8518871 
Pacheco-
Pasccagaza et 
al., 2020 

source-WUR 
agreement 

SAM_RF 2 2008 1 374 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor Lopez-Gonzales 
et al., 2011 Open 
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UK_FOS 2 2015 1.20  1 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AFR10 2 2007 1.00  7 Tropical rainforest https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta  

(Mitchard et al., 
2011) 

source-WUR 
agreement 

AFR13 2 2008 1.00  2 Tropical rainforest https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692  

(Mitchard et al., 
2009) 

source-WUR 
agreement 

AFR14 2 2009 1.63  4 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X  

(Ryan, Berry, & 
Joshi, 2014) 

source-WUR 
agreement 

AFR6 2 2009 1.00  12 Tropical rainforest https://cbmjour-l.biomedcentral.com/articles/10.1186/1750-0680-9-2 

(Willcock et al., 
2014) 

source-WUR 
agreement 

AFR7 2 2012 1.00  19 Tropical rainforest https://royalsocietypublishing.org/doi/full/10.1098/rstb.2012.0295  (Lewis et al., 2013) source-WUR 
agreement 

ASI3 2 2007 1.00  92 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S0378112711004361  (Morel et al., 2011) source-WUR 
agreement 

AUS1 2 2012 1.01  63 Subtropical steppe http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library  (Paul et al., 2016) source-WUR 
agreement 

SAM2 2 2012 1.00  40 Tropical rainforest http://geoinfo.cnpm.embrapa.br/geonetwork/srv/ eng/main.home  

 source-WUR 
agreement 

SAM_FOS 1 2011 0.25  142 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AFR15 1 2013 0.25  136 Tropical rainforest https://besjour-ls.onlinelibrary.wiley.com/doi/full/10.1111/1365-
2745.12548%4010.1111/%28ISSN%291365-2745.FORESTRY 

(Vieilledent et al., 
2016) 

source-WUR 
agreement 

AFR1 1 2008 0.50  1152 Tropical rainforest https://agritrop.cirad.fr/572060/1/document_572060.pdf  

(Hirsh, Jourget, 
Feintrenie, Bayol, 
& Ebaá Atyi, 2013) 

source-WUR 
agreement 

AFR10 1 2007 0.50  11 Tropical rainforest https://iopscience.iop.org/article/10.1088/1748-9326/6/4/049001/meta  

(Mitchard et al., 
2011) 

source-WUR 
agreement 

AFR12 1 2008 0.16  108 Tropical rainforest https://www.sciencedirect.com/science/article/abs/pii/S0034425711003609  

(Avitabile, Baccini, 
Friedl, & 
Schmullius, 2012) 

source-WUR 
agreement 

AFR13 1 2008 0.50  23 Tropical rainforest https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL040692  

(Mitchard et al., 
2009) 

source-WUR 
agreement 

AFR14 1 2009 0.51  70 Tropical dry forest https://www.sciencedirect.com/science/article/abs/pii/S014362281400109X  (Ryan et al., 2014) source-WUR 
agreement 

AFR4 1 2012 0.13  110 Tropical mountain 
system http://www.geo-informatie.nl/workshops/scw2/papers/deVries.pdf 

(DeVries, 
Avitabile, Kooistra, 
& Herold, 2012) 

source-WUR 
agreement 
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AFR5 1 2012 0.08  71 Tropical rainforest https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_2281402  

(Vaglio Laurin et 
al., 2016) 

source-WUR 
agreement 

AFR6 1 2009 0.33  12 Tropical dry forest https://cbmjour-l.biomedcentral.com/articles/10.1186/1750-0680-9-2 

(Willcock et al., 
2014) 

source-WUR 
agreement 

AFR8 1 2008 0.13  105 Tropical moist forest https://www.sciencedirect.com/science/article/abs/pii/S0034425712001058  

(Carreiras, 
Vasconcelos, & 
Lucas, 2012) 

source-WUR 
agreement 

AFR9 1 2016 0.13  9642 Tropical dry forest 
https://www.mdpi.com/2072-4292/5/4/1524 
https://fndsmoz.maps.arcgis.com/apps/MapSeries/index.html?appid=6602939f39ad4626a10f87bf6253af1e
  

(Carreiras et al., 
2012) 

open, source-
WUR agreement 

AFR_KEN 1 2011 0.09 362 

Tropical and 
subtropical 
grasslands, savannas 
and shrublands 

  source-WUR 
agreement 

ASI1 1 2008  0.05  2903 
Tropical mountain 
system and 
rainforest 

https://www.tandfonline.com/doi/full/10.1080/17583004.2016.1254009  

(Avitabile et al., 
2016) 

source-WUR 
agreement 

ASI10 1 2008 0.10  1268 Subtropical 
mountain system https://www.sciencedirect.com/science/article/abs/pii/S0034425719303608  Zhang et al. 2019 source-WUR 

agreement 

ASI2 1 2011 0.11  119 Tropical dry forest http://www.leafasia.org/sites/default/files/public/resources/WWF-REDD-pres-July-2013-v3.pdf 

WWF and OBf, 
2013 

source-WUR 
agreement 

ASI4 1 2010 0.02  70 Tropical dry forest http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.972.708&rep=rep1&type=pdf  Wijaya et al., 2015 source-WUR 
agreement 

ASI9 1 2012 0.13  74 Tropical rainforest http://leutra.geogr.uni-je-.de/vgtbRBIS/metadata/start.php 

Avitabile et al., 
2014 

source-WUR 
agreement 

ASI_FOS 1 2014 0.25 2 Tropical rainforest https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) open 

AUS1 1 2011 0.12  5611 Tropical dry forest http://data.auscover.org.au/xwiki/bin/view/Product+pages/Biomass+Plot+Library Paul et al. 2016 source-WUR 
agreement 

EU1 1 2011 0.01  16819 
Temperate broadleaf 
and mixed forests 
and Boreal forests 

https://www.slu.se/en/collaborative-centres-and-projects/swedish--tio-l-forest-inventory/  Sweden NFI source-WUR 
agreement 

EU2 1 2007 0.20  7177 Mediterranean 
forests 

http://www.magrama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/inventario-
forestal--cio-l/ 

Spain NFI source-WUR 
agreement 

EU3 1 2013 0.06  3021 Temperate oceanic 
forest https://library.wur.nl/WebQuery/wurpubs/454875  Netherlands NFI source-WUR 

agreement 
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EU4 1 2007 0.06  5967 

Temperate broadleaf 
and mixed forests 
and Mediterranean 
forests 

https://www.agriculturejour-ls.cz/publicFiles/01003.pdf 

Cienciela et al. 
2008 

source-WUR 
agreement 

EU_FOS 1 2015 0.28 514 Boreal forests https://www.-ture.com/articles/s41597-019-0196-
1?fbclid=IwAR08vLoOm4xEQo4EUdLtoKsnP6nsNIY5CYnfcoqGcS5Z0_UcyaNIr-jcdDg  

(Schepaschenko et 
al., 2019) 

open, source-
WUR agreement 

NAM1 1 2010 0.04  586 Boreal coniferous 
forest https://www.p-s.org/content/112/18/5738.short Liang et al., 2015 source-WUR 

agreement 

NAM2 1 2004 0.04 75 Temperate mountain 
system https://www.nature.com/articles/nature07276 Luyssaert et al., 

2008 
source-WUR 
agreement 

NAM3 1 2010 0.03  588 Temperate 
continental forest 

  source-WUR 
agreement 

NAM4 1 2010 0.04  2794 Temperate mountain 
system 

 Alaska NFI source-WUR 
agreement 

SAM2 1 2013 0.23  241 Tropical rainforest https://www.paisagenslidar.cnptia.embrapa.br/webgis/  Embrapa, undated source-WUR 
agreement 

SAM3 1 2011 0.13  111 Tropical rainforest  CIFOR, undated source-WUR 
agreement 

SAM4 1 2014   0.15  7 Tropical rainforest  CIFOR, undated source-WUR 
agreement 

SAM5 1 2014   0.60  23 Tropical rainforest  CIFOR, undated source-WUR 
agreement 

SAM_BAJ 1 2017 0.25 363 Tropical rainforest https://ieeexplore.ieee.org/abstract/document/8518871 
Pacheco-
Pasccagaza et 
al., 2020 

source-WUR 
agreement 

SAM_RF 1 2008 1 125 Tropical rainforest http://www.rainfor.org/en/project/about-rainfor Lopez-Gonzales 
et al., 2011 Open 

SAM_TAP
A 1 2009 0.5 138 Tropical rainforest 

https://www.tandfonline.com/doi/full/10.1080/07038992.2014.913477?casa_token=EZxeZoe
gekkAAAAA%3AZHCN98XtpZRrsS9KoGTBhPy1_yzhAkkLZHfck3fomwSnvSaO7YDiuP
V_hne6Mj1Wdn-7ME_sPChP 

(Bispo et al., 
2014) 

source-WUR 
agreement 

AFR_COF 0 2009 100 35029 Tropical moist 
forest,  https://www.nature.com/articles/s41597-020-0561-0 (Ploton et al., 2020) open 

LIDAR 0 2014 1 744397 Tropical rainforest  SLB, TERN, 
NEON open 

 


