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1. Biomass in Climate Models 
Biomass is an essential variable in the Earth System, as it is an important storage pool for carbon (C) 
removed from the atmosphere by land carbon sinks, and thus its accumulation of carbon over time 
mitigates climate warming. The current land sink of atmospheric CO2 in natural ecosystems absorbs 
on average about 30% of fossil fuel emissions, and most of the storage of this excess carbon removed 
from the atmosphere is in biomass (Friedlingstein et al., 2019). Forests hold the largest biomass pool 
on Earth, about 80% of all the biomass stocks, in particular tropical forests. According to a global 
analysis of forest carbon stocks and carbon stocks changes (Pan et al., 2011), based on inventory data 
and long-term field observations, the forest carbon sink is nearly equivalent in magnitude to the global 
land carbon sink. 

Nevertheless, biomass is not just a static repository of carbon. Dynamical variations of the biomass 
pools relate to 1) the process of total photosynthesis, whose product (GPP) is the carbon input, 2) the 
fraction of the assimilated carbon from GPP to plant (non-assimilated carbon is used for plant 
respiration), 3) the allocations of the assimilated carbon into sapwood and soft tissues like leaves and 
fine roots, 4) the conversion from sapwood into structural heartwood, 5) plant mortality processes, 
which lead to biomass losses through a number of factors: fires, drought, individual mortality, 
competition for resources.  

Carbon cycle models, an important part of Earth System Models (ESMs), were developed to account 
for CO2 fluxes exchanged between ecosystems and the atmosphere (Sellers et al., 1996). The 
importance of carbon stocks in models was recognized when the first study of carbon-climate 
feedbacks (Cox et al., 2000) showed that the large biomass pool of the Amazon forest was vulnerable 
to climate drying and warming, as in their simulation, the entire forest collapsed by 2100, causing a 
huge loss of CO2 into the atmosphere. This result has raised a lot of research about the stability of 
tropical forest biomass, and different ESMs have been applied to solve this question, showing 
contrasting results (Phillips et al., 2009; Malhi et al., 2009; Rammig et al., 2010; Huntingford et al., 
2013). These studies show that most ESMs retain stable tropical forests in the Amazon, although some 
regions have a decrease of biomass in response to drought and increased fire. 

The understanding and quantification of biomass in ESMs, more precisely in land surface models that 
are part of ESMs, depend on simulation of plant productivity and respiration, which determine the 
ratio between Gross Primary Productivity (GPP) and Net Primary Productivity (NPP). This ratio is called 
carbon use efficiency (CUE), or the fraction of GPP used for biomass production, that is, biomass 
production efficiency (BPE). The simulation of biomass also relates to the carbon allocation schemes 
and parameterization of plant mortality in models. We summarize below the recent research results 
related to the evaluation and uncertainty of land carbon cycle models with respect to each of these 
processes.  

We consider both coupled ESMs and offline dynamic global vegetation models (DGVMs). For the 
coupled ESMs, the carbon cycle and the computation of biomass are coupled with ESM-simulated 
climate, whereas the offline DGVMs are driven by the observed gridded climate fields or ESM-
predicted future climate fields. For the historical period, the most widely used ensemble of DGVM 
models is from the TRENDY project, in which currently 15 DGVMs are driven by reconstructed climate, 
observed atmospheric CO2 and land use land cover data, to assess the annual budget of CO2 (Le Quéré 
et al., 2018). Another project called MsTMIP project (Huntzinger et al., 2013) also gathers coordinated 
runs from a larger ensemble of DGVMs, including a set of factorial global simulations considering 
nitrogen deposition influences, but all the simulations from MsTMIP only cover the period up until 
2010. For the future, the offline DGVMs have been run to predict biomass and other carbon cycle 
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variables in the ISIMIP-Phase2-b project (ISIMIP2b modelling protocol on the website, 
https://www.isimip.org/protocol/#isimip2b) where the climate drivers are from four CMIP5 ESMs with 
a bias correction to adjust climate fields to observations in the period 1961-1990 (Frieler et al., 2017). 
Climate projections for the low-emissions Representative Concentration Pathway RCP2.6 and no- 
mitigation pathway RCP6.0 are used to drive different DGVMs. In the ISIMIP-Phase3 the same DGVMs 
will be driven by the bias-corrected output of CMIP6 models used in the upcoming 6th IPCC Assessment 
Report (see Outcome of the ISIMIP Strategy Group Meeting 2018; https://protocol.isimip.org/). 

 

Table 1-1: A brief summary of global model ensembles 

Project 
name 

Models participating in Time period Forcing data* Reference 

TRENDY 
v8 

CABLE, CLASS-
CTEM, CLM5.0, 
DLEM, ISAM, ISBA-
CTRIP, JSBACH, 
JULES-ES, LPJ-
GUESS, LPX-Bern, 
OCN, ORCHIDEE, 
ORCHIDEE-CNP, 
SDGVM, VISIT 

1901-2018 

CLIM: CRU-
NCEP v8;  

CO2: NOAA 

LU: Hurtt’s 

Soil&NDE: 
model group use 
its own data; 

  

Le Quéré et al. (2018) 

MsTMIP 

Biome-BGC, CABLE-
JPL, CABLE, CLASS-
CTEM-N+, CLM, 
CLM4-VIC, DLEM, 
ECOSYS, GTEC, 
HYLAND-JPL, ISAM, 
JULES-JPL, LPJ-wsl, 
MC1, ORCHIDEE-JPL, 
ORCHIDEE-LSCE, 
SiB3-JPL, SiBCASA, 
TEM6, TRIPLEX-GHG, 
VEGAS, VISIT 

1901-2010 

CLIM: CRU-
NCEP;  

CO2: Enhanced 
GlobalView;  

NDE: Enhanced 
Dentener;  

Soil: HWSD; 

LU: Hurtt’s + 
SYNMAP 

Huntzinger et al. (2013) 

CMIP5 

ACCESS1.0, 
ACCESS1.3, BCC-
CSM1.1/-CSM1.1m, 
BNU-ESM, CanCM4, 

Historical: 
1860-2005 

 

CO2: NOAA 

Other GHGs and 
aerosol: IIASA 

Taylor et al. (2012) 
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CanESM2, CCSM4, 
CESM1-BGC/-
WACCM/-
FASTCHEM/-CAM5/-
CAM5.1-FV2, CMCC-
CM/-CMS/-CESM, 
CNRM-CM5, CSIRO-
Mk3.6.0, EC-EARTH, 
FDOALS-g2, FGOALS-
s2, FIO-ESM, GFDL-
ESM2M/-ESM2G/-
CM2.1/-CM3, GISS-E2-
R/-E2-H/-E2-R-CC/-E2-
H-CC, HadGEM2-ES/-
CC/-AO, HadCM3, 
INM-CM4, IPSL-
CM5A-LR/-CM5A-
MR/-CM5B-LR, 
MIROC4h, MIROC5, 
MIROC-ESM/-ESM-
CHEM, MPI-ESM-LR/-
ESM-MR/-ESM-P, 
MRI-EMS1/-CGCM3, 
NCEP-CFSv2, 
NorESM1-M/-ME 

Future: 
2006-2100 

LU: LUH2 

 

ISIMIP2a 

CARAIB, DLEM, 
JULES-B1, LPJ-
GUESS, LPJmL, 
ORCHIDEE, VEGAS, 
VISIT  

1901-2012 

CLIM: GSWP3, 
WATCH, 
PGMFD 

CO2: NOAA 

LU: Hyde 3.0 

NDE: ACCMIP 

Chang et al. (2017) 

ISIMIP2b 
CARAIB, CLM4.5, 
DLEM, JULES-B1, LPJ-
GUESS, LPJmL, 

Historical: 
1861-2005 

Future: 

CLIM: CMIP5 

CO2: NOAA 
Frieler et al. (2017) 
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ORCHIDEE-DGVM, 
VEGAS, VISIT 

2006-2100 LU: Hyde 3.2  

NDE: ACCMIP 

ISIMIP3a 

CARAIB, CLM4.5, 
DLEM, JULES-B1, LPJ-
GUESS, LPJmL, 
ORCHIDEE-DGVM, 
VEGAS, VISIT, et al. 

1901-2018 

CLIM: GSWP3, 
GSWP3-W5E5 

CO2: NOAA 

LU: Hyde 3.2  

NDE: NCAR 
CCMI 

https://protocol.isimip.org/ 

ISIMIP3b 

CARAIB, CLM4.5, 
DLEM, JULES-B1, LPJ-
GUESS, LPJmL, 
ORCHIDEE-DGVM, 
VEGAS, VISIT, et al. 

Historical: 
1850-2014 

Future: 

2015-2100 

CLIM: CMIP6 

CO2: NOAA 

LU: Hyde 3.2 

NDE: NCAR 
CCMI 

https://protocol.isimip.org/ 

* CLIM = climate, LU = land use, NDE = nitrogen deposition. 

 

2. Processes controlling the dynamics of biomass 

2.1. Gross Primary Productivity 

A recent analysis of CMIP5 model results by Koven et al. (2015) suggests that in ESMs, the change of 
biomass stocks in the future is controlled mainly by changes of GPP and not by changes of mortality, 
because most ESMs do not contain processes representing the effects of disturbances, water stress or 
stand competition on mortality. Therefore, it is important for biomass simulation to first assess the 
simulation of GPP. Anav et al. (2013) evaluates the ability of CMIP5 models to simulate GPP against 
FLUXNET site–level observations using a model tree ensemble (MTE) upscaling approach (MTE-GPP, 
Jung et al. 2011). For the global averages, all the models overestimate the global mean GPP over the 
period 1986– 2005, which is not due to bias in climate variables, although precipitation is the main 
driving factor for photosynthesis across the globe, temperature being mainly limiting in northern high 
latitudes (Piao et al., 2009). Other reasons explain the systematic overestimation of global mean GPP 
in all the CMIP5 models: first, most of these models do not consider nutrient limitation on GPP (Zaehle 
et al., 2010; Goll et al., 2012); second, the parameterization of the impact of tropospheric ozone on 
reducing GPP (Sitch et al., 2007; Witting et al., 2009) is not yet implemented in the models. A further 
evaluation of global mean GPP simulated by DGVMs forced offline by observed climate (i.e., CRU-
NCEP) also confirms that the land surface components of the CMIP5 ESMs still overestimate the GPP 
when forced by observations. For the inter-annual variability (IAV) of GPP, no model can capture the 
IAV of the MTE-GPP in the tropics and in the Northern Hemisphere, and all models simulate larger GPP 
IAV than the one given by the MTE–GPP. However, it should be noted that there are substantial doubts 



 

Ref CCI Biomass Climate Assessment Report v3 

 

Issue Page Date 
3.0 15 14.07.2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

about the quality of the MTE-GPP product regarding the magnitude of inter-annual variability, 
particularly in the tropics, because no FLUXNET sites in the tropics are used to train the MTE-GPP 
product, and machine learning algorithms use the information on spatial variability of the FLUXNET 
data to construct the IAV (Anav et al., 2013).  

2.2. Carbon use and biomass production efficiency 

Carbon use efficiency (CUE) is the ratio of net primary production (NPP) to GPP, and biomass 
production efficiency (BPE) is the fraction of GPP used for biomass production (BP) of terrestrial 
ecosystems. CUE is not directly measurable, because NPP comprises BP and the production of non-
structural organic compounds, the latter used to maintain functions of the rhizosphere and plant (e.g., 
mycorrhizae, root exudates, and volatile carbon compound emissions) which cannot be measured 
directly (Chapin et al., 2006; Vicca et al., 2012; Campioli et al., 2015). In contrast, BP, which is 
photosynthetically-derived carbon used for biomass growth (i.e. build-up of leaves, wood and roots), 
is measurable with biometric observations. A large fraction of BP is being appropriated by humans 
through the harvest of food (Haberl et al., 2007; Erb et al., 2016). Currently non-harvested BP drives a 
carbon sink in biomass.  

Carbon cycle models have not been rigorously evaluated for BP due to the lack of adequate 
measurements. However, the compilation of large databases of GPP and BP components for forests 
(Luyssaert et al., 2007) and for other vegetation types (Campioli et al., 2015) allowed evaluation of the 
distribution of BPE across biomes. Piao et al. (2010) suggest that the BPE is a hump-shaped function of 
mean annual temperature that peaks at values of 10°C in southern boreal and temperate forests and 
decreases to ~0.15 in tropical and northern boreal forests. Fernández-Martínez et al. (2014) also find 
that BP in forests was controlled by soil nutrient availability, with more fertile forests having a large 
rate of biomass production and NPP relative to GPP, possibly because of less carbon investment costs 
for maintenance purposes, in particular root tissues. Campioli et al. (2015) show that BP across 
vegetation types is a function of management, with managed systems being more efficient at 
converting GPP carbohydrates to biomass. He et al. (in review) presents a new global estimation of 
BPE obtained by combining field measurements from 113 sites with 14 DGVMs. Their best estimate of 
global BPE was 0.41 ± 0.05. The largest BPE was found in boreal forests (0.48 ± 0.06) and the lowest in 
tropical forests (0.40 ± 0.04). DGVMs from the MstMIP ensemble tend to overestimate BPE, although 
models with carbon-nitrogen interactions were more realistic. Overestimation of BPE may imply an 
overestimation of carbon input to biomass pools, but the most important process that discriminates 
biomass simulation in models is how NPP is allocated to woody and soft tissues pools, because the 
latter have a fast turnover rate and cannot be a large permanent storage pool of carbon in the Earth 
system.   

2.3. Allocation of net primary productivity to biomass pools 

Negrón-Juárez et al. (2015) show that CMIP5 ESMs have limitations in modelling the carbon allocation 
of net primary production which propagates to errors in biomass estimates from CMIP5 ESMs. More 
recently, Xia et al. (2019) examine the NPP allocation response to variations in temperature or 
precipitation and find that carbon allocation is often opposite in leaves and fine roots, which is 
consistent with the functional balance theory for allocation. They also find that the observed allocation 
to fine roots decreases with increasing temperature and precipitation. The observed NPP allocation to 
wood and leaves decreases with forest stand age. Compared with the observations, the simulated NPP 
allocation estimates from five TRENDY DGVMs show the same spatial gradient of lower NPP allocation 
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to fine roots with increasing temperature and precipitation but different spatial gradients of NPP 
allocation to wood and leaves. None of the five models adequately represents the changes in allocation 
with forest stand age. Specifically, the models cannot reproduce the decrease in NPP allocation to 
wood and leaves and the increase in allocation to fine roots with increasing forest stand age. Therefore, 
an accurate simulation of NPP allocation and biomass requires more realistic representation of 
multiple processes that are closely related to allocation.  

2.4. Mortality 

Regarding mortality, at the scale of a single tree, tree biomass develops during the tree lifetime and is 
transformed to litter when the tree dies. During the lifetime of a tree, leaf and fine root biomass are 
also continually dying given their short turnover times, and provide carbon input to soil organic carbon 
pools. Compared to the leaves and fine roots, branches have longer turnover times. Thus, vegetation 
mortality, at the scale of a single tree, can vary depending on the turnover time of these tissue carbon 
pools. 

At the scale of a population of trees (i.e. forest ecosystem), at any given point in time, the amount of 
biomass not only depends on the woody growth of all individual trees, but also on competition 
between trees for resources such as light, water and nutrients. At a critical tree density, light 
competition is exacerbated and tree mortality can occur due to crowding, usually leading to the 
smallest trees dying. Competition causes more self-thinning, which generally is reflected by a power 
law relationship between the mean size of individual trees and the tree density in the stand. But in 
tropical forests, particularly in productive forests where the growth rates of individual trees is high, 
competition between trees is very severe, and tropical forests tend to show deviations from the power 
law relationship for the dominant trees (Farrior et al., 2016). This  suggests that it is mainly understory 
trees, not canopy trees, that engage in competition under strong light limitation. In addition to 
competition-induced mortality, individual trees can die after a certain lifespan or when they face 
natural enemies. A study by Stephens et al. (2007) suggests that the highest ecosystem biomass is not 
achieved in tropical forests, where the rate of vegetation growth is the highest. This is because in 
tropical forest mortality induced by natural enemies is very high, whereas in temperate regions where 
vegetation growth rate is relatively low, mortality is much less intense. Most of the current DGVMs 
use a fixed mortality rate when they simulate biomass as well-mixed carbon pools, and do not describe 
dynamic mortality processes associated with competition. However, mortality in LPJ-GUESS, LPJmL, 
OCN and SDGVM accounts for competition among trees for resources (Walker et al. 2015; Thurner et 
al. 2017). In SDGVM, mortality via self-thinning is a result of competition between cohorts within each 
individual plant functional type (PFT), under the constraint that NPP must be sufficient to maintain a 
minimum stem diameter increment, otherwise stem density would reduce. In LPJ-GUESS, LPJmL and 
OCN, competition for light and water is considered by using a canopy cover upper threshold, i.e. if 
canopy cover exceeds a threshold ratio to ground area, stem density would reduce. 

Last but not least, a large fraction of biomass mortality is induced by disturbances. Disturbances range 
from small scale mortality events in response to biotic factors to larger scale ones from windthrow 
(Bouget and Duelli, 2004), fires (Brando et al., 2012), insects and pathogens (Das et al., 2016), and 
climate warming or drying altering the eco-physiological functioning of forests. Biomass losses also 
occur from climate-induced and natural disturbances. Allen et al. (2010) examine more than 150 
references that document 88 examples of forest mortality induced by climatic water/heat stress since 
1970. Such climate-induced mortality events span a broad gradient of woody ecosystems, from 
monsoonal savannas to subalpine conifer forests, and to tropical rainforests. In savanna, extreme 
multi-year droughts (more than 3 years) can cause substantial tree death associated with prolonged 
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water deficits (Fensham et al., 2009). In temperate forests, extreme seasonal droughts may be more 
likely to induce dieback of deciduous broadleaved forest due to xylem cavitation (Maherali et al., 
2004). In tropical rainforests, short but extreme droughts can cause relatively diffuse mortality; for 
example, tree mortality rate in Indonesia reached 26% after the severe El Niño in 1997/1998 (Van 
Nieuwstadt and Sheil, 2005). More recently, Anderegg et al. (2019) developed a set of early warning 
metrics for drought-induced tree mortality using Landsat satellite data. These early warning metrics 
predict the tree hydraulic stress and mortality during the droughts in the southwestern US and in 
tropical forests. In addition, Thurner et al. (2016) suggest that mortality in temperate and boreal 
forests can be explained by different climate-related processes: tree mortality in temperate forest is 
associated with the enhanced risk of insects and pathogens during droughts, whereas frost damage 
can explain the tree mortality in boreal forest. Thurner et. al. (2017) highlight discrepancies in 
simulating loss processes from mortality in DGVMs, i.e., the mortality process is usually modeled using 
rather simple assumptions. Mortality induced by fires, windthrow, insects, diseases, extreme drought 
and frost damage is not accounted for in the current generation of DGVMs. In addition, recent studies 
for the tropics show that incorrect modeling of mortality processes in DGVMs and ESMs tends to cause 
exacerbated discrepancies in simulating biomass (Delbart et al., 2010; Ahlström et al., 2017). 
Therefore, improvement in our current understanding and more accurate prediction of tree mortality 
are critically needed. 

2.5. Land use change and harvest affecting biomass 

Biomass is not only vulnerable to climate disturbance but also to human disturbances. Today a large 
percentage of the global forests is harvested, so that the laws of natural mortality controlling the 
biomass of forests are bypassed by economic processes and human drivers, such as the demand for 
wood for fuel or materials. This is another challenge for DGVMs as it implies that they must include 
forest management, not only for wood removal but also for the recovery of forest biomass after human 
disturbance. Human-driven land use and land cover change dynamics are estimated to impose ~50% 
reductions in forest carbon stocks at the global scale (Erb et al., 2018). Using a book-keeping approach, 
these estimates of total cumulative emissions from land use change (since early human activities) 
range from 375 to 525 PgC (Erb et al., 2018). In comparison, the DGVMs from the TRENDY v2 model 
ensemble, in which human perturbation of land use may have started in 1850, find a cumulative carbon 
loss of only one third of Erb’s estimate (155 ± 50 PgC; Li et al., 2017). Possible reasons for this large 
discrepancy include: (1) the book-keeping approach tends to overestimate the pre-industrial biomass 
stocks in forests; (2) early human activities may already have significantly reduced biomass stocks by 
1850, which is plausible because of the use of biomass as a primary source of energy in pre-industrial 
human societies, and the large per capita biomass appropriation rates reconstructed from pre-
historical and historical studies; (3) DGVMs used in Li et al. (2017) only account for biomass losses from 
forest area loss, but the impacts of forest management and the gathering of litter and fuelwood by 
local communities are not included. 

2.6. Turnover times 

The concept of turnover time of carbon in the biosphere is key to understanding the relationship 
between biomass (carbon stock) and carbon sinks. The term turnover time commonly refers to the 
ratio of the carbon stock of a pool to its outgoing flux (Bolin and Rhode,1973; Sierra et al., 2010). 
Realistic dynamic turnover time (τ) in biomass (used in Cantú et al., 2014) that accounts for changes in 
vegetation carbon stocks (dCS) and in NPP, as given by: 
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dCS/dt = NPP - CS/τ  

Bolin and Rhode (1973) show that for well-mixed pools, the turnover time is equal to the mean age of 
carbon in each pool, and that the turnover time of carbon atoms follows an exponentially decreasing 
distribution. However, since mortality (or respiration for soil carbon) is usually not available as gridded 
observation-based data, for global estimates of turnover input fluxes (GPP or NPP) have been used in 
some studies (e.g. Carvalhais et al., 2014) instead of outgoing fluxes, which is based on an additional 
near-equilibrium assumption that NPP approximates to mortality. This assumption is broadly correct 
at large spatial scales where NPP and mortality are far greater than the net carbon stock change, but 
it breaks down at plot scale where the change in stock is a significant fraction of NPP, for example in a 
growing forest. Processes controlling the turnover times of carbon have been shown to be the least 
certain, determining the differences between different DGVM models, in projections of the future 
carbon cycle in forests (Friend et al. 2014). The feedback between the terrestrial carbon cycle and 
climate is also partly dependent on changes in the turnover time of carbon in land surface ecosystems. 

The turnover time is not an independent process but rather is an ecosystem property that emerges 
from the interplay between productivity, carbon use efficiency, carbon allocation and mortality 
processes. It is generally controlled by climate (that has an influence on all those processes, as 
explained above), vegetation types, as well as appropriation of NPP and biomass induced by human 
land-use (Erb et al., 2016). A spatially explicit and observation-based assessment of whole-ecosystem, 
biomass and soil carbon turnover times was proposed by Carvalhais et al. (2014), based on GPP derived 
from eddy covariance flux towers, satellite-based above-ground biomass, and soil carbon data from 
ground surveys extrapolated to carbon down to 3m depth. They estimate the overall mean global 
carbon turnover time is 23 years (19 to 30 years at 95 % confidence interval). On average, carbon has 
a longer turnover time in vegetation and soil near the Equator, and a shorter time in northern latitudes. 
Mean turnover times vary from 15 to 255 years from the tropics to the northernmost latitudes. 
Carvalhais et al. (2014) also show a strong dependence of turnover time not only on temperature, as 
expected from our present understanding of temperature controls on ecosystem dynamics, but also 
on precipitation. The ecosystem carbon turnover times simulated by CMIP5 ESMs vary widely, and 
these models, on average, tend to underestimate the global carbon turnover time by 36%. Compared 
to observation-based estimates, CMIP5 ESMs show stronger spatial relationships between turnover 
times and temperature, and cannot reproduce the relationships between turnover times and 
precipitation. This misrepresentation would probably explain why CMIP5 ESMs tend to predict much 
faster carbon turnover in many semi-arid regions.  

Reichstein et al. (2019) further review turnover times in biomass and find that CMIP5 ESMs have a low 
correlation between the modeled and the observed turnover time of carbon in vegetation (τ =
biomass GPP⁄ ; Carvalhais et al., 2014), although their GPP and biomass estimates show good overall 
agreement with the observations. They also find that, in CMIP5 ESMs, the correlation between the 
modelled turnover time and tree cover fraction is significant and positive, that is, tree biomes are 
expected to have a longer turnover time in biomass, though this correlation can vary among models, 
ranging from 0.50 (INMCM4) to 0.88 (MPI-ESM- LR). They applied a linear regression to biomass and 
GPP, and the slope of regression is carbon turnover time.  They found the regression results for model 
and data are quite different. A possible reason is that CMIP5 ESMs did not well consider the impacts 
of  the extent of NPP derived from GPP, carbon allocation strategies, and mortality dynamics on 
turnover times. However, their analysis could not further quantify the relative contributions of the 
biases in CUE (or BPE), carbon allocation strategies, or mortality schemes. But CUE differences seemed 
to co-vary to some extent with turnover time differences between models, which implies the 
importance of understanding both the controls of carbon allocation and autotrophic respiration in 
predicting turnover time, not only a possibly wrong NPP-GPP relation in those models.  
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3. Evaluation of biomass in carbon cycle models 
Estimates of the global distribution of forest above-ground biomass (AGB) have been produced (Table 
3.1) using sample plots from forest inventories (Pan et al., 2011) combined with remote sensing 
observations (Liu et al., 2015). In addition, a number of biome-specific datasets have been published, 
all characterized by large uncertainties at local scale (Mitchard et al., 2013). Unfortunately, none of 
these datasets is suitable for evaluating global model outputs either because they are not truly global 
(e.g. AGB from GEOCARBON project) or have coarse resolution (e.g. AGB from Liu et al. 2015). Yet, 
substantial advances towards the generation of global datasets of AGB density from remote sensing 
observations have been made in recent years to support such types of evaluation.  

The dataset of AGB density in 2017 produced in CCI Biomass and based on multiple remote sensing 
observations and in situ measurements, is deemed to be suitable to evaluate global model outputs, 
because (1) it covers a fixed epoch circa 2017-2018 for all the tropical, temperate and boreal regions; 
(2) it has been evaluated against in situ data at various scales and appears to provide a reliable spatial 
characterization of AGB density; (3) it is available at a spatial resolution of 100 m, much finer than 
other published datasets of AGB density, allowing a precise calculation of biomass density per forest 
area to match model output; (4) it comes with per-pixel estimates of AGB density uncertainty and error 
spatial correlation structure, allowing us to aggregate uncertainty from 100 m to the spatial resolution 
of global models, typically 0.5°. 

The previous GlobBiomass dataset of AGB density was estimated from GSV derived from spaceborne 
Synthetic Aperture Radar (SAR), LiDAR (Light Detection And Ranging) and optical remote sensing 
observations for the year 2010 in a multi-model retrieval framework. The GlobBiomass retrieval 
algorithm is the starting point for the development of the CORE retrieval algorithm used in CCI 
Biomass. For CCI Biomass, vegetation heights are included in the retrieval models and allometries 
between height and biomass are used to directly map the biomass instead of GSV. The estimation of 
AGB was supported by forest inventory datasets, additional remote sensing data products and 
climatological variables (Santoro et al., 2018; Santoro et al., in preparation). Forest AGB density and 
retrieval error was generated at the highest spatial resolution of the remote sensing datasets, i.e., 
25m. However, the large uncertainty of 25 m pixel estimates due to imperfections in the remote 
sensing data and the weak sensitivity of the data to biomass, suggested provision of spatially explicit 
estimates of AGB density at an aggregated scale of 100 m. The 100 m standard deviation (SD) of AGB 
density from the CCI Biomass data set is obtained by propagating individual uncertainties of the remote 
sensing measurements, retrieval model parameters and ancillary data sets ( see details in ATBD), which 
are at most 30% at 100 m spatial resolution. 
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Table 3-1: A brief summary of different regional/global above-ground biomass datasets. 

Regions Approaches 
Study 
epoch 

Spatial resolution 
References 
/Sources 

Global 

 

SAR image-based growing stock 
volume, which is converted to 
global AGB carbon 

2010 100m × 100m 

GlobBiomass 

Santoro et al. 
(2018) 

SAR image-based AGB carbon 
using CCI CORE retrieval 
algorithms 

2017 100m × 100m CCI Biomass 

C-band Passive microwave-
based global AGB carbon 

1993-
2012 

0.25o × 0.25o 
C-VOD AGB 

Liu et al. (2015) 

L-band Passive microwave-
based global AGB carbon 

2010-
2019 

0.25o × 0.25o 
L-VOD AGB 

Fan et al. (2019) 

A global forest biomass dataset 
generated from three existing 
biomass maps. 

Tropical: Saatchi + Baccini 

Temperate + Boreal: Santoro 

Saatchi:      

        2000 

Baccini:  

     2007/8 

Santoro:  

        2010 

0.01o × 0.01o GEOCARBON 

Forest inventory data-based; 
including above and below 
ground biomass 

1990-
2007 

Global/ regional 
averages 

Pan et al. (2011) 

Tropical 
A combination of forest 
inventory data and satellite Lidar 
samples of forest structure 

2000 0.01o × 0.01o 
Saatchi et al. 
(2011) 
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Figure 3-1: Spatial patterns of 0.5-degree above-ground biomass circa the year 2017 derived from the 
CCI Biomass product, defined by tree cover thresholds of 0%, 15%, 20%, 25% and 30%. 

To be consistent with the spatial resolution of the majority of the DGVMs, the estimates of AGB density 
and its standard error from CCI Biomass were aggregated to 0.5 degree. The original CCI Biomass data 
were provided for each 100 m pixel regardless of land-cover type, thus, to estimate the 0.5° AGB values 
for all plants and forest, we first label each 100 m pixel of ‘forest’ using the Hansen tree cover map 
(Hansen et al., 2013), depending whether the tree cover is above or below a given threshold, 
respectively. We then calculate an average of all AGB values labelled as ‘forest’ within the averaging 
spatial window of 0.5° × 0.5°. Five different thresholds of tree cover fraction of 0%, 15%, 20%, 25% and 
30% are used in aggregating AGB per forest area at 0.5° (Figure 3.1). Here, using the tree cover 
threshold of 0%, we obtain the 0.5-degree AGB density for all plants, while we obtain the 0.5-degree 
AGB density for forests using the thresholds of 15%, 20%, 25% and 30%. Additionally, considering the 
error covariance in the GlobBiomass data, the SE of the average of AGB at 0.5° is calculated as 

𝛿(𝐴𝐺𝐵!.#$)% =
1
𝑁% ∙5 𝛿(𝐴𝐺𝐵&)% +

'

&()

2
𝑁% ∙5 5 𝐶𝑜𝑣;𝛿𝐴𝐺𝐵& , 𝛿𝐴𝐺𝐵*=

'

*(&+)

',)

&()
 

where 𝐶𝑜𝑣;𝛿𝐴𝐺𝐵& , 𝛿𝐴𝐺𝐵*= is the covariance of errors between the estimates of AGB from pixel i and 
pixel j within the averaging window. As shown in Figure 3.1 and 3.2, the spatial patterns of 0.5-degree 
AGB density and forest area are quite different based on different thresholds of tree cover fraction. 

In addition, biomass density data, originally in units of Mg ha-1, were converted to biomass carbon 
density (Mg C ha-1) using a factor of 0.5 (Baccini et al., 2012; MacDicken, 2015). 
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Figure 3-2: Spatial patterns of 0.5-degree forest area, defined by tree cover thresholds of 15%, 20%, 
25% and 30%. 

3.1. Materials and methods 

3.1.1. Modelling biomass in global climate/carbon process-based models 

TRENDY DGVMs 

DGVMs from the TRENDY v8 project (Sitch et al., 2015) include CABLE, CLASS-CTEM, CLM5.0, DLEM, 
ISAM, ISBA-CTRIP, JSBACH, JULES-ES, LPJ-GUESS, LPX-Bern, OCN, ORCHIDEE, ORCHIDEE-CNP, SDGVM 
and VISIT (Table 3.2). All the models provided the ‘cVeg’ output, which is the total living biomass for 
all plant functional types (PFTs), and 8 out of 15 models provided the ‘cVegpft’, which can be used to 
calculate forest biomass per forest area. These models are driven by observation-based climate forcing 
data to reconstruct land carbon changes since 1850, and simulated land-use change emissions and 
biomass loss from a global harmonized land cover change dataset. In all the simulations, the climate 
forcing is from the CRU-NCEP v8 dataset (Viovy, 2018), including precipitation, snowfall, temperature, 
short-wave and long-wave radiation, specific humidity, air pressure, and wind speed at 6h resolution 
and for the years 1901–2018.  

TRENDY DGVMs perform three factorial simulations, S3, S2 and S1 with time-varying climate, CO2, and 
land-use forcings turned on or off over the historical period. Simulation S3 is driven with changes in all 
forcings. The changes in forest biomass and historical forest area in this simulation are the net result 
of the expansion of cropland and pasture, and afforestation or forest regrowth following 
abandonment, together with the effects of changes in observed CO2 and climate over the historical 
period. Simulation S2 is driven with changes in only the climate and CO2 over the historical period but 
the land cover is specified corresponding to year 1860. Finally, simulation S1 is driven with only the 
increase in CO2 over the historical period while climate change and land-use change correspond to 
pre-industrial conditions. These simulations allow us to isolate the individual contributions of elevated 
CO2 concentration (S1), climate change (S2 minus S1) and land-use change (S3 minus S2) over the 
historical period. The historical land-use change maps are from the LUH2v2h reconstruction (Hurtt et 
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al., 2011), the 1901–2018 climate forcing are from CRU-NCEP v8 data set (Viovy, 2018) which include 
precipitation, snowfall, temperature, short-wave and long-wave radiation, specific humidity, air 
pressure and wind speed at 6h temporal resolution. A short summary of processes included in each 
model that impact biomass is given in Table 3.2, as well as the number of different vegetation types 
defined as forest in each model. 

Table 3-2: A brief description of 15 DGVMs from the Trendy v8 project. 

Models Number of 
Forest PFTs  

Carbon-
nitrogen 
interaction 

Wood 
harvest and 
forest 
degradation 

Fire as a 
managemen
t tool 

Shifting 
cultivation 

Resolution 

CABLE 4 N Y N Y 1° × 1° 

CLASS-
CTEM 5 N N N N 2.8125° × 

2.8125° 

CLM5.0 - Y Y N N 0.9524° × 
1.25° 

DLEM - Y Y N N 0.5° × 0.5° 

ISAM 14 Y Y N N 0.5° × 0.5° 

ISBA-
CTRIP - N N N N 1° × 1° 

JSBACH 4 Y Y N Y 1.875° × 
1.875° 

JULES-ES 2 N N N N 1.875° × 
1.25° 

LPJ-GUESS 10 Y Y N Y 0.5° × 0.5° 

LPX-Bern 8 Y N N N 0.5° × 0.5° 

OCN - Y Y N N 1° × 1° 

ORCHIDEE 8 N Y N N 0.5° × 0.5° 

ORCHIDEE
-CNP 8 Y N N N 2° × 2° 

SDGVM - Y N N N 0.5° × 0.5° 

VISIT - N - - - 0.5° × 0.5° 

 

According to the TRENDY protocol the biomass simulated by a DGVM is provided as total biomass, 
including above- and belowground pools. Before further analysis, total biomass outputs from all the 
models are first remapped to the same spatial resolution of 0.5° × 0.5°. Following Liu et al. (2015), we 
use biome-specific ratios of total and AGB carbon (i.e. 1.24 for the boreal and temperate forests; 1.26 
for the tropical forests) to infer AGB in order to match the GlobBiomass AGB data. Specifically, the 
values of forest AGB density (AGB, gC/ha) and forest area (A, ha) are calculated as: 

AGB =
∑ 𝛽 × 𝑏& × 𝑓&&(),%,,,,

∑ 𝑓&&(),%,…
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A =5 𝑎& × 𝑓&
&(),%,…

 

where β is the ratio of above-ground to total biomass, bi (MgC ha-1) is forest PFT-specific above-ground 
biomass, ai (ha) is the area of the grid cell, and fi is the land cover fraction of the ith PFT provided by 
the individual DGVM. In addition, we also evaluate the biome mean forest AGB from DGVMs. Global 
forest AGB is split into the six climate zones of the Köppen-Geiger climate classification: tropical wet, 
tropical dry, arid, temperate, boreal and polar (Figure 3.3). 

 
Figure 3-3: Map of six Köppen-Geiger climate biomes. TRO W = wet tropical, TRO D = dry tropical, 
ARID = arid, TMP = temperate, BOREAL = boreal, POL = polar. 

 

CMIP5 ESMs 

We have collected monthly biomass outputs from CMIP5 ESMs during AGB observation epochs from 
the IPCC data distribution center. In ESMs, biomass is simulated by land surface models coupled with 
climate models. In addition, we plan to use available AGB outputs of the CMIP6 ESMs that will provide 
simulations to the upcoming IPCC exercise during the course of the project. The evaluation of CMIP5 
and CMIP6 models is not presented here given their larger uncertainty due to uncertainty in climate 
drivers but will be provided in a future version of the CAR. 

3.2. Evaluation of DGVMs using CCI Biomass dataset 

3.2.1. Global and Biome estimates 

Figure 3.4a compares the global mean all plants AGB and forest AGB for 2017 from the CCI Biomass 
dataset and the 15 DGVMs. The AGB of each DGVM stems from the Trendy v8 S3 simulation (driven 
by varying CO2, climate change and land-use change). The global all plants AGB from the CCI Biomass 
dataset is 328 PgC, but all DGVMs predict lower global AGB for all PFTs, except for the DLEM model. 
The average global AGB from the 15 DGVMs is 230  63 PgC, the spread corresponding to the 1-sigma 
standard deviation between models, while the individual value ranges from 153 PgC in JSBACH to 363 
PgC in DLEM. The global forest AGB from the CCI Biomass dataset varies slightly from 263 to 278 PgC, 
corresponding to an increase of 6%, for decreasing tree cover thresholds (from 30% to 15%) used to 
define forest area (Figure 3.4a). The global forest area is more sensitive to the choice of the threshold 
(Figure 3.4b), with an increase of 15% (when applying the 30% vs. 15% tree cover threshold). The forest 
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AGB from the eight DGVMs (excluding ORCHIDEE) is 195  71 PgC, the spread corresponding to the 1-
sigma standard deviation between models. The global forest AGB from the CLASS-CTEM, ORCHIDEE-
CNP and JULES-ES models is very close to the CCI Biomass estimates. We found the “cVegpft” output 
from the ORCHIDEE model to be faulty, so the results of ORCHIDEE are excluded from the analysis.   

 

TRENDY DGVMs were forced by the same land-use change dataset, LUH2v2h. The reasons for different 
modelled forest areas are (a) models use different rules used to translate land cover to different PFTs 
(Table 3-2), i.e., models have different distributions of natural vegetation; (b) some models represent 
dynamic vegetation and shifting cultivation processes, others don’t (Table 3-2). In addition, the 
LUH2V2h data may not match the forest area from the CCI Biomass data set.  

Some models can reproduce global AGB values,but they are not exempt from regional biases. For all 
plants AGB, as shown in Figure 3-5a, all the models show lower all plants AGB than the CCI Biomass 
product in the wet tropics, temperate and boreal regions. Only the DLEM, CLASS-CTEM and JULES-ES 
models provide higher all plants AGB than CCI Biomass in the dry tropics, the others give lower 
estimates. For the forest AGB, as shown in Figure 3-5b, large differences between DGVM estimates 
and CCI Biomass with a 30% tree cover threshold can be found in the wet tropics. DGVMs provide 
lower forest AGB than CCI Biomass. JSBACH, JULES-ES, CABLE-POP and ISAM also underestimate forest 
AGB in the boreal region compared to CCI Biomass. Only CLASS-CTEM and ORCHIDEE-CNP 
overestimate forest AGB relative to CCI Biomass in temperate forests. 

 

Figure 3-4: Global total all plants AGB (black bars) and forest AGB (green bars) circa the 
year 2017 derived from the CCI Biomass dataset and DGVMs. Based on the Hansen 
dataset, forest pixels are defined in the CCI Biomass dataset by the tree cover thresholds of 
15%, 20%, 25% and 30%. 
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Figure 3-5: (a) Biases in the total all plants and forest AGB (simulated minus CCI Biomass data) in six 
biomes circa 2017. The Köppen-Geiger climate classification map (see Figure 3-3) is used to determine 
biome types. TRO W = wet tropical, TRO D = dry tropical, ARID = arid, TMP = temperate, BOREAL 
= boreal, POL = polar.  

To understand the reason for the discrepancy between modeled and observed AGB at the biome scale, 
we compare AGB density from CCI Biomass and the ensemble mean of Trendy DGVMs. Figure 3-6a and 
3-6b show the differences in AGB density of all plants and forests. This shows that the forest AGB is 
the most uncertain component, and contributes most of the biases in all plants AGB. Large differences 
in AGB density can be found in wet tropical forests and forests in Europe and North America.   

 
Figure 3-6: (a) Difference in AGB density of all plants between the multi-model ensemble of Trendy 
DGVMs and CCI Biomass. (b) Difference in AGB density of forests between the multi-model ensemble 
of Trendy DGVMs and CCI Biomass. Forest AGB density from CCI Biomass are defined using 30% 
tree cover threshold. 

3.2.2. Global, regional and local spatial variability of AGB density 

 

To investigate how DGVMs reproduce global and local spatial gradients of AGB density, we calculated 
1) global spatial correlations (R) between observed and modeled AGB density of all plants and forests, 
2) regional spatial correlation between observed and modeled AGB density of all plants and forests in 
six biomes, and 3) local spatial correlation (r) between observed and modeled AGB density across 0.5° 
grid cells within super-grid-cells of 10°. The first and second metrics give an evaluation of how well 
models reproduce the global and regional gradients of AGB density. The third one reflects the similarity 
of spatial variability of AGB density, and is relevant for evaluating models at local scale within biomes 
or ecotones (10° ≈ 1,000 km at the equator).  
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Most DGVMs appear to reproduce well the large-scale variations in AGB density across the globe when 
compared to the CCI Biomass data set (Figure 3-7). In particular, DGVMs show stronger agreement 
with the CCI Biomass in simulating the spatial variability of AGB density of all plants (R = 0.85, multi-
model ensemble mean) than of forests (R = 0.70, multi-model ensemble mean). For the regional spatial 
variability of AGB density, DGVM estimates show strong agreement with CCI Biomass in simulating the 
variations of all plants AGB density in the wet and dry tropics and boreal regions. DGVMs also show 
good agreement in simulating the variations of forest AGB density in the wet tropics, boreal and polar 
regions. However, relatively poor skills of DGVMs in simulating the AGB density of forests can be found 
in arid, temperate and dry tropics, particularly the OCN model in arid and temperate areas and the 
CLASS-CTEM model in the tropics and temperate regions.  

 
Figure 3-7: Spatial patterns of correlation coefficients between the CCI Biomass and simulated spatial 
local variation of all plants AGB density (individual panels labelled by model name). The correlation 
coefficients are calculated using all 0.5° grid cells of AGB density within super-grid-cells of 10°. 
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Figure 3-8: Same as Figure 3-8, but for forest AGB density. 

The local spatial correlation coefficient r between the reference and simulated spatial local variation 
of all plants AGB density and forest AGB density is shown in Figures 3-8 and 3-9. These show that 
DGVMs can well capture the spatial variations of all plants derived from CCI Biomass, but the JULES-ES 
and VISIT models show a relatively low value of r for both tropical and high latitude regions (Figure 3-
8). Generally, DGVMs show lower local correlation with forest AGB density from CCI Biomass than with 
all plants AGB density from CCI Biomass, particularly in some dry tropics, arid and temperate regions 
(Figure 3-9). This is probably due to the difference in definition of forest between CCI Biomass data 
(using tree cover map) and DGVMs (based on their own Plant Functional Type map).  
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In addition to correlation coefficient statistics, we diagnosed the modelled and CCI Biomass-based 
spatial sensitivity of AGB density to temperature and precipitation in six biomes using multiple linear 
regressions (Figure 3-10a and 3-10b). The sensitivity of AGB density from CCI Biomass to precipitation 
is positive in five biomes except in the wet tropics. DGVMs show a higher positive sensitivity of AGB 
density to precipitation in arid and temperate regions than the sensitivity derived from CCI Biomass 
(Figure 3-10a). This overestimated sensitivity of AGB density to precipitation relative to CCI Biomass 
parallels the fact that models also overestimate the precipitation sensitivity of GPP (Beer et al., 2010; 
their Figure 2). This implies that the overestimated spatial sensitivity of AGB density to precipitation in 
Figure 3-10 reflects how models simulate C inputs rather than mortality in response to the climatic 
driver. For the sensitivity of AGB density to temperature, CCI Biomass shows positive sensitivity in 
polar, boreal and wet tropics, and negative sensitivity in the dry tropics and temperate regions. DGVMs 
can reproduce the sign of sensitivity (except for the wet tropics) but underestimate its magnitude 
(Figure 3-10b). We also compare the AGB unexplained by climate from CCI Biomass and from the multi-
model ensemble mean of Trendy. As shown in Figures 3-10c and 3-10d, the regions with high 
unexplained AGB exhibit similar patterns in CCI Biomass data and from the ensemble mean of Trendy 
models, and might be affected by natural/human disturbance.  

3.3. Conclusions 

All plants and forest above-ground biomass estimated by an ensemble of 15 DGVMs from the TRENDY 
v8 project are compared with the recently published CCI Biomass dataset of AGB density estimated 
from remote sensing observations. The main findings of the analysis are:  

The 15 DGVMs display a wide range for the global and biome total all plants and forest AGB. The 
difference of total regional AGB between the CCI Biomass dataset and DGVMs stems from forest AGB 
density, in particular in the wet tropics and boreal regions. This might be due to different definitions 
of forests between data and models. 

The CCI Biomass AGB estimates reflect the impact of natural and/or human disturbances, e.g. fire 
disturbance, human and livestock activity, and land use change on determining AGB density. However, 
such effects are largely underestimated or are not included in the current TRENDY DGVMs.  

TRENDY DGVMs are limited in their ability to reproduce the magnitude of local spatial variations in 
forest AGB density. The model discrepancy in the magnitude of local spatial variations is partly due to 
overestimation of the sensitivity of biomass to local variability in precipitation.  

Overall, for development and improvement of DGVMs, our findings show: (1) higher accuracy of model 
predictions of forest cover and forest cover changes is required, as these variables are directly related 
to the prediction of forest biomass carbon sequestration capacity; (2) the importance of improving the 
representation of human, livestock and fire disturbances in the DGVMs; (3) a high-resolution biomass 
dataset allows us to precisely calculate and evaluate biomass density of forest; (4) model skills in 
reproducing forest biomass density variability should be refined through further studies. In addition, a 
time series of global maps of AGB is necessary to evaluate the temporal variability of AGB derived from 
DGVMs. 

Figure 3-9: The observed and simulated sensitivity of AGB density to precipitation (a) and temperature 
(b) in six biomes. MME is the multi-model ensemble mean of 15 DGVMs. The sensitivities are 
calculated using linear regression, AGB = b0 + b1Pre + b2Tmp. The residuals in AGB density of the 
fitting regression model are in (c) and (d). AGB density are from (c) CCI Biomass and (d) the multi-
model ensemble mean (MME) of 15 DGVMs. 
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4. Towards an evaluation of carbon allocation and 
turnover times in models 

Variations in land carbon fluxes are related to the rate of carbon assimilation by plants, the fraction of 
carbon allocated to living plant tissues, and the time that carbon resides in living plant tissues before 
mortality and the carbon is respired back to the atmosphere (Malhi et al., 2009). The allocation of non-
respired photosynthates, i.e. NPP, to various biomass pools and their individual turnover are described 
in far less detail in state-of-the-art dynamic global vegetation models (DGVMs) and Earth system 
models (ESMs) than the processes controlling canopy photosynthesis (Friend et al., 2014). Such 
structural model deficiencies limit the ability of these models to simulate terrestrial ecosystem carbon 
sequestration and to accurately predict its response to climate change (Friend et al., 2014; Negrón-
Juárez et al., 2015; Wu et al., 2018).  

In recent years, several studies used Earth Observation (EO) to infer forest carbon turnover times as 
the ratio of biomass and plant productivity under steady state assumptions (Carvalhais et al., 2014; 
Thurner et al., 2016; Wang et al., 2018). This approximation reflects the overall turnover times of all 
plant carbon pools (including above- and below-ground). Yet the turnover times of different living plant 
tissues (e.g. leaves, roots and wood) vary greatly and allocation patterns differ in time and space 
(Hofhansl et al., 2015; Xia et al., 2019). Thus, it is useful to compute carbon allocation and turnover 
time of individual pools separately. At plot level, carbon allocation and turnover time within the major 
carbon pools have been measured (Chen et al., 2013; Xue et al., 2017), but information on large-scale 
patterns of carbon allocation and turnover are still lacking.  

The first objective of this study is to generate gridded (25 × 25 km) pantropical maps of the partitioning 
of forest NPP to wood and leaves, and the turnover times of the wood and leaf carbon pools. We 
produce such estimates based on satellite-based or observation-based productivity, biomass, leaf 
area, fire and grass grazing emission data. Such purely data-driven carbon allocation fraction and 
turnover time are evaluated using ground measurements. Secondly, we explore the link between 
forest growth and mortality using data-driven carbon allocation and turnover estimates. Finally, we 
investigate the climate conditions and vegetation properties influencing the spatial gradients of carbon 
allocation fractions and turnover time. This work is viewed as a methodology to infer parameters 
relevant to the carbon cycle using maps of biomass change and productivity in a single data 
assimilation system, that can be extended to CCI Biomass change maps when they become available 
for different epochs.  

The results of Section 4 have been recently published as a journal paper (Yang et al., 2021) 

4.1. Data assimilation of carbon allocation and turnover times from EO data 

4.1.1. Parameter optimization 

The data assimilation system, hereafter referred to as the Carbon Assimilation in the Tropics (CAT), 
follows a Bayesian formalism to optimize six unknown parameters, viz. carbon allocation fraction (af,W, 
af,L and ag,L), turnover rates (rf,W and rf,L) and ratio of the initial stock of forest wood pool to leaves pool 
(Sf,W/Sf,L), using satellite-based continuous annual AGB and derived leaf mass from leaf area index (LAI) 
and specific leaf area (SLA) over the period 2011-2016. Within each 25km × 25km grid cell (the original 
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resolution of the L-VOD dataset calibrated against biomass maps), we define a quadratic cost function 
J(x) which describes the misfit between the observation-based and model-estimated AGB and leaf 
mass, taking their uncertainties and prior values into account. The expression for J(x) is given by  

(𝑥) = (𝑥 − 𝑥/)0𝐵,)(𝑥 − 𝑥/) + (𝐻(𝑥) − 𝑦)0𝑅,)(𝐻(𝑥) − 𝑦) 

where x are the optimized parameters, xb are their prior values, and B is the error covariance matrix 
for the prior parameters. The priori values, the ranges of the optimized parameters, and the 
uncertainty of their prior values are given in Table 4-1. y and H(x) are the observation-based and 
model-estimated AGB and leaf mass. R is the error covariance matrix of y, which is assumed to be 
diagonal and 10% of the mean value of y. The function J(x) is iteratively minimized by the sequential 
quadratic programming (SQP) algorithm. At each iteration, an approximation is made to the Hessian 
of the Lagrangian function using a quasi-Newton updating method. 

A box model is used to describe the carbon state and dynamics of individual biomass carbon pools in 
two cover types, forest and grass. Forests have three carbon pools, i.e. wood (Sf,W), leaves (Sf,L) and 
roots (Sf,R), whereas grasses have only leaves (Sg,L) and roots (Sg,R). This box model has a generic 
conceptual structure, identical to that adopted by any carbon cycle model. The change in carbon stock 
of each pool over time (on a yearly time step) is calculated by the differences between the incoming 
and outgoing fluxes, represented as: 

⎩
⎪
⎨

⎪
⎧
𝑑𝑆1,2
𝑑𝑡 = 𝑎1,2 × 𝑁𝑃𝑃1(𝑡) − 𝑟1,2 × 𝑆1,2(𝑡)

𝑑𝑆1,3
𝑑𝑡

= 𝑎1,3 × 𝑁𝑃𝑃1(𝑡) − 𝑟1,3 × 𝑆1,3(𝑡)

𝑑𝑆4,3
𝑑𝑡

= 𝑎4,3 × 𝑁𝑃𝑃4(𝑡) − 𝑟4,3 × 𝑆4,3(𝑡)

 

where Sf,W, Sf,L and Sg,L is the carbon stock of a certain pool, the incoming flux is the product of the 
associated carbon allocation fraction (af,W, af,L and ag,L) and Net Primary Productivity (NPPf and NPPg), 
and the outgoing flux from each pool is assumed to be proportional to the carbon stock of the pool, 
with a proportionality constant given by the turnover rate (rf,W, rf,L and rg,L). The turnover time of the 
grass leaf biomass pool (1/rg,L) is assumed to be one year, following Erb et al. (2016). Note that if the 
optimized turnover time of the forest leaf biomass pool (1/rf,L) were shorter than one year, the carbon 
stocks would be calculated as Sf,L(t)=af,L×NPPf(t)×1/rf,L, based on the steady-state assumption. 

The outgoing fluxes in the box model include loss of biomass due to natural and climate-induced plant 
mortality. Additionally, we account as a removal flux for disturbance-induced loss, i.e., the biomass of 
grass and leaves consumed by livestock, the biomass of leaves consumed by herbivory (like insects, 
wild grazers, or browsers), and the fire-driven biomass loss to match observation-based values of AGB 
and leaf mass (Figure 4-1). H is defined by the following: 

H(x) - y: T
;𝑆1,3 × (1 − 𝑐) + 𝑆1,2= × 𝑓1 + 𝑆4,3 × 𝑓4 − 𝐹 − 𝐺

𝑆1,3 × (1 − 𝑐) × 𝑓1 + 𝑆4,3 × 𝑓4 − 𝐺 − 𝐹4
W − X 𝐴𝐺𝐵

𝐿𝐴𝐼 × 𝑆𝐿𝐴[ 

 where ff and fg are forest and grass cover fractions in the year of 2011 derived from the MODIS land 
cover map (i.e. MOD12Q1). G is the grass biomass consumed by livestock, F is the total fire-induced 
biomass losses, and Fg is the biomass removed from the grass carbon pools due to fires. The parameter 
c is the total leaf consumption rate by tropical herbivores, with an approximate value of 0.2 (Coley et 
al., 1996). 
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We use two gridded NPP and one gridded GPP dataset, three L-VOD AGB datasets and two LAI datasets 
(see Section 4.1.2 and 4.1.3) in the data assimilation system to optimize the estimates of carbon 
allocation and turnover. 

Table 4-1: The prior value of the optimized parameters and their uncertainties. 

 
aThe prior values of NPP allocation fractions and their uncertainty (1σ) are derived from the 
measurements in the tropics collected by Xia et al. (2019).  
bThe ranges of allocation fractions are derived from a global database for leaf, stem and root biomass 
(Chen et al., 2013). Such ranges are estimated using observations from all over the world. 
cThe uncertainty of the  grass leaf allocation fraction is set to 40% of its range. 
dThe range of turnover rate of forest leaf pool stem is from the 2207 leaf longevity records from TRY 
dataset. The longevity of tropical forest leaves range from 1 month to 24 years. 
eThe prior value of turnover rate of the forest wood biomass pool and its uncertainty are estimated using 
plot data from Galbraith et al. (2013). For the uncertainty of turnover rate of the forest leaf biomass pool, 
we use the same value as the forest wood biomass pool. 
f The range of turnover rate of the forest wood pool is estimated by Martínez-Ramos and Alvarez-Buylla 
(1998); the longevity is estimated to be less than 400 years. 

 

 

Parameters Prior value Prior range Uncertainty of prior 

Allocation fractions 

Forest 

Leaf 0.33a 0.001-0.882b 0.2a 

Wood 0.32a 0.008-0.954b 0.15a 

Leaf + Wood - < 1 - 

Grass Leaf 0.3 0-1 0.4c 

Turnover rates 

Forest 
Leaf 0.64 0.04-12d 0.02e 

Wood 0.021e 0.0025-1f 0.02e 
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4.1.2. Input data to the carbon cycle data assimilation system 

NPP and GPP. We use two satellite-based NPP datasets for the period 2010-2016 from MODIS (Zhao 
et al., 2010) and GIMMS (Smith et al., 2016). The former is provided at a spatial resolution of 1km × 
1km, whereas the latter has a spatial resolution of 0.5o × 0.5o. The GIMMS NPP was calculated by using 
GIMMS photosynthetically active radiation and leaf area index data, based on the same algorithm as 
the MODIS NPP product. We also use a global GPP dataset based on a hybrid EO-driven mechanistic 
model, the Breathing Earth System Simulator (BESS). The BESS couples an atmospheric radiative 
transfer module, a two-leaf canopy radiative transfer module, and an integrated carbon assimilation-
stomatal conductance-energy balance module (Jiang et al., 2016). The spatial resolution of the derived 
GPP is 0.5o × 0.5o. In the tropics, and a constant carbon use efficiency (CUE) of 0.4 (Malhi et al., 2012) 
is used to convert GPP into NPP (hereafter referred to as BESS NPP). 

Table 4-2: The definition of forest and grass. 
Types Land cover types Tree cover fraction 

Forest 

Evergreen Needleleaf Forest (ENF) 
Evergreen Broadleaf Forest (EBF) 
Deciduous Needleleaf Forest (DNF) 
Deciduous Broadleaf Forest (EBF) 

- 

Figure 4-1: The structure of the carbon emulator and data used to retrieve 25km × 25km carbon 
state and process variables. Within each 25km × 25km grid cell, satellite-based NPP over forest and 
grassland are partitioned into the live biomass pools. Natural and climate-induced plant mortality 
are the output of the live biomass pools. Fire fluxes are derived from the GFED dataset. Grass 
grazing fluxes are from the ISIMIP2 project. Data constraints include L-VOD above-ground carbon 
and leaf mass. Here, leaf mass is obtained by multiplying specific leaf area (SLA) from Butler et 
al. (2017) and leaf area index from MODIS, GIMMS and GlobMAP datasets. ax is the allocation 
fraction; Sx is the biomass stocks; and rx is the rate of turnover. Details are provided in section 4.1. 
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Mixed Forest (MF) 
Shrub 
Woody Savanna 
Savanna 

> 25% 

Grass 

Woody Savanna 
Savanna 

≤ 25% 

Grassland 
Cropland 

- 

 

By averaging high-resolution data over neighboring pixels, it is possible to generate aggregated forest 
and grass NPP at coarser spatial resolution. This requires that each pixel is pre-labelled as “forest” or 
“grass”. In this study, using a 1 km MODIS land cover map and 30 m Landsat tree cover map (Hansen 
et al., 2013), we assign each 1km pixel to a “forest” or “grass” category based on the following rules 
(Table 4-2): (1) If the land cover type is one of six forest and shrub types (i.e. Evergreen Needleleaf 
Forest, Evergreen Broadleaf Forest, Deciduous Needleleaf Forest, Deciduous Broadleaf Forest, Mixed 
Forest and Shrub), we classify this pixel as “forest”; (2) If the land cover type is Grassland or Cropland, 
we classify the pixel as “grass”; (3) If the land cover type is woody savanna or savanna, the category of 
the pixel depends on the tree cover fraction. If tree cover fraction is greater than 25%, we classify this 
pixel as “forest”; if not, classify it as “grass”. The 30m Landsat tree cover map is first aggregated to 1 
km resolution. Within each 25 × 25km spatial window, forest NPP is then computed as the average of 
NPP values of 1-km pixels that are classified as “forest”, and grass NPP is computed in the same manner 
(Figure 4-2); the forest (grass) cover fractions are calculated as areal fraction of pixels labelled “forest” 
(“grass”). Note that we use land cover and tree cover maps for the year 2010, and all the areas that 
experienced a decrease of tree cover fraction of more than 5% over the period of 2010-2016 are 
masked, because we focus in this study on estimating carbon allocation and turnover times that were 
unaffected by forest loss disturbances.  
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For the GIMMS and BESS NPP data, the values of NPP at 0.5o resolution are downscaled to 25 km 
resolution. Then, we use the ratio of grass NPP to forest NPP (γ), and the forest cover fraction (ff) and 
grass cover fraction (fg) from the MODIS land cover map to estimate GIMMS (and BESS) forest NPP and 
grass NPP (Figure 4-2), as follow: 

𝑁𝑃𝑃1 = 𝑁𝑃𝑃 ;𝑓1 + 𝛾𝑓4=⁄  

𝑁𝑃𝑃1 = 𝑁𝑃𝑃 ;𝑓1 + 𝛾𝑓4=⁄  

Fire-induced biomass losses. Annual fire carbon emissions during the period 2011-2016 are from the 
fourth-generation Global Fire Emission Database (GFED4s, 
https://www.globalfiredata.org/index.html), based on satellite information on fire activity and 
vegetation parameters. The original data at 0.25o resolution are re-gridded to the 25 × 25km working 
resolution of the data-assimilation system.  

Grass biomass consumed by livestock. The grass biomass consumed by livestock data originate from 
Herrero et al. (2013) for the year 2000, and are extrapolated to the period 1900-2012 using gridded 
changes in livestock density (Chang et al., 2016). The original data at 0.5o resolution are downscaled to 
25 × 25 km resolution. In this study, we use the multi-year averages of grass biomass consumption for 
the period 2011-2012. 

Figure 4-2: Forest NPP, grass NPP, forest and grass cover fraction. Spatial patterns of (a) MODIS 
forest NPP, (b) MODIS grass NPP, (c) GIMMS forest NPP, (d) GIMMS grass NPP, (e) BESS forest 
NPP, and (f) BESS grass NPP during the period 2011-2016, and spatial patterns of (e) forest cover 
fraction and (f) grass cover fraction from MODIS land cover data. 
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4.1.3. Input data to constrain carbon allocation and turnovers 

Satellite-based AGB. Satellite-based tropical above-ground biomass (AGB) data at 25 × 25 km 
resolution covering the period from 2010 to 2017 are from Fan et al. (2019). These data (hereafter 
referred to as L-VOD AGB) are produced by using vegetation optical depth at L-band (L-VOD) from the 
passive microwave Soil Moisture and Ocean Salinity (SMOS) satellite. Three L-VOD AGB maps are 
available, corresponding to the calibrations from previous AGB maps by Saatchi et al. (2011), Avitabile 
et al. (2016), and Baccini et al. (2012). In the update of this work the CCI biomass map will be used to 
calibrate L-VOD. These three sets of L-VOD AGB are used to constrain the model-estimated AGB. 

Satellite-based LAI. Satellite-based Leaf Area Index (LAI) is obtained from the GIMMS3g (Zhu et al., 
2013) and GlobMAP datasets (Liu et al., 2012). GIMMS3g LAI is available at 1/12-degree spatial 
resolution and GlobMAP LAI at 8km spatial resolution. Both products are aggregated to 25km spatial 
resolution. To avoid saturation effects over dense forests, GIMMS and GlobMAP LAI are calibrated 
against a limited amount of LAI data from field measurements obtained between 1982 and 2000 and 
compiled by the Oak Ridge National Laboratory (ORNL) (Scurlock et al., 2001). In tropical regions, linear 
calibration coefficients for GIMMS and GlobMAP LAI are 0.95 and 0.89, respectively (Figure 4-3). 

 

Observation-based SLA. The global map of SLA is generated from optimal interpolation of the global 
plant trait TRY database using Bayesian modelling (Butler et al., 2017). These data are at 0.5-degree 
spatial resolution, and in this study are used to calculate leaf mass, combined with calibrated satellite-
based LAI data. 

Figure 4-3: Comparison between satellite-based and measured LAI from field sites in the tropics. LAI 
measurements cover the period 1982-2000. The linear calibration coefficients are estimated by linear 
regression through the origin; they are 0.95 for the satellite-based LAI from (a) GIMMS and 0.89 for 
those from (b) GlobMAP datasets. 
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4.1.4. Uncertainties in carbon allocation and turnover times 

An ensemble of 18 sets of carbon allocations and turnover times maps are estimated from three NPP, 
three L-VOD AGB datasets, and two LAI datasets. The standard deviations of different combinations 
are used to estimate parameter uncertainties associated with the spread between those different 
input fields. For example, we calculate the standard deviation of carbon allocation and turnover times 
associated with NPP data when fixing each LAI and each AGB value. This value reflects the uncertainties 
in the optimized parameters due to using different NPP products. We perform the same analysis for 
different LAI and AGB products. The average uncertainties associated with the NPP, LAI and AGB 
products are computed. 

4.2. Spatial patterns of carbon allocation and turnover 

Using the Carbon Assimilation in the Tropics (CAT, Figure 4-1), we first optimize the allocation of forest 
NPP to leaf and wood carbon pools. As shown in Figure 4-4, for the tropical forest, on average NPP 
allocations to wood (0.30 ± 0.04) are significantly higher than to leaves (0.24 ± 0.07) (p-value <0.05, 
according to the t-test). From the wet tropics to the dry tropics, both forest NPP allocation into wood 
and leaves declines slightly. For forest NPP allocation to wood, there are minor differences between 
different vegetation types. By contrast, for the forest NPP allocation to leaves, evergreen broadleaf 
forest (median and interquartile range: 0.27,!.!5+!.!5) and open shrublands (0.24,!.!6+!.!7) exhibit higher 
fractions than for woody savannas (0.13,!.!%+!.!5) and savannas (0.14,!.!5+!.!)). This is consistent with the 
expectation that more carbon would be allocated to below-ground biomass in biomes more limited by 
water availability. 

Figure 4-4: Forest NPP allocated to leaf and wood carbon pools. The left column panels show the 
spatial distributions of forest NPP allocation to (a) leaf (af,L) and (b) wood (af,W) carbon pools. 
The right column panels show the boxplots of af,L and af,W estimates per vegetation type 
according to the MODIS land cover map. Vegetation types are evergreen broadleaf forest (EBF), 
open shrublands (OS), woody savannas (WS) and savannas (S). 
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Figure 4-5: Turnover time of forest leaf and wood carbon pools. The left column panels show the spatial 
distributions of turnover time of forest (a) leaf carbon pools (1/rf,L) and (b) wood carbon pools (1/rf,W) 
in each 25 × 25km grid cell. The right column panels show the boxplots of 1/rf,L and 1/rf,W estimates for 
different tropical continents, including South America (SA), Africa (Af), and Southeast Asia (SEA). 

 
Figure 4-6: Carbon allocation and turnover time from CARDAMOM. Spatial patterns of forest NPP 
allocation to leaf, wood and root pools, and the turnover times of forest leaf and wood carbon pools. 

The optimized turnover times of forest leaf and wood pools presented in Figure 4-5 are spatially 
homogeneous. Leaf turnover times of tropical forests vary little across the three continents, while 
wood turnover times in Africa (median and interquartile range: 50.1,8.!+#.# yr) are slightly longer than in 
South America (48.2,5.5+8.! yr) and Southeast Asia (48.3,5.)+#.8 yr). This is consistent with results from 
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permanent plot measurements, reporting longer carbon residence times in Africa (Sullivan et al., 
2020). Our estimates of wood turnover are double those from the CARDAMOM model-data fusion 
framework (Figure 4-6), which combined the DALEC carbon balance model with satellite-based LAI and 
biomass data (Bloom et al., 2016) and allometric criteria to select plausible solutions for ill-constrained 
parameters. 

 
Figure 4-7: Evaluation with ground-based NPP allocation to leaf and wood, leaf NPP and woody NPP. 
(a) CAT-estimated and measurement-based carbon leaf and wood allocation fractions in Amazon. Grey 
bars show ground measurements, while colored bars show the estimates from CAT. The errorbars for 
grey bars are one standard deviations of the repeated measurements from different years and plots; and 
the errorbars for colored bars are one standard deviations of CAT estimates resulted from different input 
and constraint data. (b) The comparison of plot-scale leaf litterfall and CAT-estimated leaf NPP, which 
are obtained as the product of leaf allocation and mean forest NPP. (c) The comparison of plot-scale 
woody NPP and CAT-estimated woody NPP (the product of wood allocation and mean forest NPP). 
The insets in (b) and (c) show the probability density function of measured and estimated leaf NPP and 
woody NPP. Horizontal error bars show 1 standard deviations across plots within one 25 × 25km grid 
cell. Vertical error bars show 1 standard deviation stem from different input and constraint data. 

4.3. Evaluation using ground-based measurements 

We compare independent plot-scale forest wood and leaf allocation fractions from Xia et al. (2019) 
with CAT results. As shown in Figure 4-7, the CAT-optimized wood allocation fractions agree fairly well 
with the mean of ground measurements, but leaf allocation fractions in southern Amazonia plots are 
slightly underestimated compared to ground measurements. Here, plot-scale leaf allocation fractions 
were calculated as the ratios of leaf NPP, wood NPP to total NPP. The underestimation of leaf allocation 
fraction in CAT may reflect the different total NPP between our satellite fields and plot data. Thus, we 
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further directly compare plot-scale independent leaf litterfall and above-ground woody NPP from plots 
with CAT results. As shown in Figure 4-7b, our estimated leaf NPP agrees fairly well with plot-scale 
independent leaf litterfall data (correlation R = 0.54, p-value < 0.05) from Chave et al. (2010). Woody 
NPP is calculated as the product of wood allocation and total NPP, the latter from the average of three 
NPP products MODIS, GIMMS and BESS. The range of our estimates is similar to plot-scale data (ranging 
from 1 to 5 MgC ha-1 yr-1), but mean plot-scale woody NPP is 0.8 MgC ha-1 yr-1 smaller than our 
estimates. This also confirms that plot-scale total NPP (e.g. sum of leaf NPP, woody NPP and root NPP) 
is smaller than the satellite-based estimates. 

In old-growth forest plots, woody turnover times are calculated as the ratio of above-ground woody 
biomass and above-ground woody productivity, assuming steady state, and this gives values 
comparable to our turnover times estimates. Gridded woody turnover time has a significant positive, 
but weak, spatial correlation with plot data (Figure 4-8; spatial correlation R = 0.25, p-value < 0.05). 
However, CAT systematically underestimates high values of wood biomass turnover time. This may be 
partly due to underestimation of carbon stocks in high vegetation density areas (Figure 4-8b) because 
of a possible saturation of L-VOD to biomass in high biomass regions (Fan et al., 2019), the mismatch 
of the spatial scales of satellite and plot data, and the proportion of degraded and deforested area. 

 
Figure 4-8: Validation with measured turnover times of wood biomass pools at the mature forest plots. 
(a) CAT-estimated and measurement-based turnover times of wood biomass pools in the tropics. 
Measurement-based woody turnover time were calculated by the ratio of woody biomass and woody 
productivity from Brienen et al. (2015) and Galbraith et al. (2013). (b) The comparison between 
measurement-based and L-VOD AGB. (c) The comparison between measurement-based and satellite-
based forest woody NPP. Horizontal error bars show the one standard deviations across plots within one 
25 × 25km grid cell. Vertical error bars show the uncertainty stem from different input or constraint 
data. (d) The locations of forest plots. Background color reflects the mean annual L-VOD AGB for the 
period 2010-2016. 
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4.4. Trade-offs between allocation to growth and turnover time 

Here we analyze emergent relations between wood/leaf growth (defined as woody/leaf productivity) 
and wood/leaf turnover times. Figure 4-9a shows a general inverse relation between leaf growth and 
leaf turnover time, and also an inverse relation between wood growth and wood turnover time, across 
tropical forests (Figure 4-9b). Previous studies using tree-ring data or ground measurements also found 
this trade-off between growth and tree lifespan (Brienen et al., 2020; Büntgen et al., 2019; Wright et 
al., 2011). But our analysis suggests that this trade-off exists not only at the tree level but also at the 
organ level. Figure 4-9c and 4-9d show that leaf turnover times decrease by less than 40% when leaf 
productivity increases by 50%, while wood productivity increases in the same proportion (50%), 
corresponding to a larger reduction in wood turnover times, especially in the wet tropics. Several 
possible theories explaining growth-lifespan trade-offs have been proposed. Some believe that faster 
growth is a direct or indirect reason for shorter lifespan: faster growth requires higher metabolic rate, 
which may have negative effects on lifespan (Issartel and Coiffard, 2011); or under the fixed-size 
hypothesis : when trees grow faster, they will die early once they reach a maximum size (Büntgen et 
al., 2019). Others, however, think that this trade-off is in line with plant investment strategies, i.e., 
plants adjust allocation to balance growth against security (e.g. safer mechanical and hydraulic 
architecture) (Wright et al., 2011). 

 
Figure 4-9: Relationship between leaf/wood growth and wood/leaf lifespan. Correlation coefficients 
between (a) leaf productivity and leaf turnover times, (b) wood productivity and wood turnover times. 
(c) (d) The percentage of changes in leaf and wood turnover times when leaf and wood productivity 
increase by 50%. These percentages are calculated using least-squares regression. Correlation and 
regression analysis are applied to each spatial window of 5°×	5°. 

4.5. Factors influencing spatial gradients of carbon allocation and turnover times 

Carbon allocation fraction.  

We observe in Figure 7 that the most important factor influencing the changes of carbon allocation 
fraction to leaves and wood is canopy height. Our results show that carbon allocation fraction to leaves 
increases significantly with canopy height. As shown in Figure 7a, for young and short forests, more 
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carbon tends to be allocated to wood for stem growth, the carbon allocated to wood being double 
that to leaves. Old and tall forests adjust their carbon allocation coefficient to leaves to be close to the 
carbon allocation fraction to wood. Fig. 7b shows the relationship between canopy height and carbon 
allocation fraction to leaves and wood for evergreen broadleaf forests, wood savannas and savannas, 
respectively. We found no significant difference in wood allocation fraction for different vegetation 
types, whereas woody savannas and savannas have a lower carbon allocation fraction to leaves than 
evergreen broadleaf forests. Nevertheless, different vegetation types have similar increases in carbon 
allocation fraction to leaves with increasing canopy height. 

 
Figure 4-10: The relation between carbon allocation and canopy height. (a) Median of leaf and wood 
allocation fraction for each percentile bin of canopy height. (b) Same as (a), but for evergreen broadleaf 
forests, woody savannas and savannas respectively. The vertical errorbars in (a) and (b) show 
interquartile range of allocation fractions. 

In addition to canopy height, we observe in Figure 4-11 that background climate (mean annual 
temperature, precipitation and radiation) controls forest NPP allocated to leaves and wood. Figure 4-
11a, b, e, f show that carbon allocation fraction to leaves and wood are both positively related with 
temperature and precipitation. The median leaf and wood allocation increases significantly with 
increasing temperature and precipitation. Our results also show that the sensitivity of leaf allocation 
to background temperature and precipitation is higher than that of wood allocation (Fig. 8). Elevated 
air temperature could increase photosynthetic capacity, while temperatures below the physiological 
optimum (typically 30-40 oC) and increasing temperature may accelerate leaf ageing or increase leaf 
thickness (Huang et al., 2019; Niinemets, 2001). Thus, plants in a high temperature environment with 
no water limitation tend to allocate more carbon to leaves. Another possible mechanism for the 
relationship mentioned above is in line with functional balance theory (Franklin et al., 2012; Hofhansl 
et al., 2015), namely that plants adjust their biomass among various tissues in response to 
environmental changes to obtain the most growth-limiting resource. Water is the main limitation 
resource for growth in the dry tropics (Nemani et al., 2003). For plants in water-limited environments, 
more carbon is allocated to roots, therefore less carbon to wood and leaves, as shown in Fig. 8b and f. 
The effect of radiation on regulating carbon allocation is relatively weak: only wood allocation for short 
trees slightly decreases with radiation increase (Fig. 4-11g). 
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Figure 4-11: The relation between carbon allocation and climate and vegetation factors. Median of leaf 
allocation fraction for each percentile bin of (a) temperature, (b) precipitation, (c) radiation and (d) the 
percentage of forests associating with ectomycorrhizal (EcM) fungi. Lines with light color dots 
represents trees with height being less than 20 m, while lines with dark color dots represents trees with 
height being more than 20 m. (e)-(h) Same as (a)-(d), but for wood allocation fractions. The vertical 
error bars show the interquartile range of allocation fractions. 

Last, we observe in Figure 4-11d and 4-11h that carbon allocation fractions are related to the 
mycorrhizal associations of plants: carbon allocated to wood and leaves decreases with the percentage 
of forests associating with ectomycorrhizal (EcM) fungi. This implies that forests with high 
ectomycorrhizal (EcM) fungi allocate more carbon to below-ground roots rather than above-ground 
leaves and wood. Previous studies suggested that high EcM forests have high nitrogen demand, and 
EcM fungi are more efficient in taking up nitrogen but in exchange for carbon (Sulman et al., 2017). 
This is why carbon allocated to below-ground increases with increasing EcM percentage. 

Turnover time.  

For wood turnover time, we observe in Figure 4-12 that background climate (especially precipitation) 
plays an important role in influencing its spatial variation. Wood turnover time decreases with 
precipitation, especially in the transitional wet-to-dry region (mean annual precipitation around 2000 
mm yr-1). For leaf turnover time, as shown in Figure 4-12, leaf turnover time is negatively correlated 
with SLA and leaf phosphorus concentration. This suggests that the “leaf economic spectrum” (e.g. 
trade-offs between SLA and leaf phosphorus concentration) rather than climate conditions regulate its 
spatial variation. This is consistent with the findings of Shiodera et al. (2008) and Xu et al. (2017), 
indicating the observed leaf longevity in tropical evergreen forests is positively correlated with leaf 
mass per area (LMA, i.e. the inverse of SLA). These relations may be driven by ecological coordination 
with plant growth strategies. An increase in leaf phosphorus concentration can enhance the 
photosynthetic capacity, and forests with high photosynthetic capacity usually belong to fast-growing 
species, because they can benefit from fast nutrient resorption and high photosynthesis. 
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Figure 4-12: The relation between carbon turnover times and climate and leaf traits. Median of leaf and 
wood allocation fraction for each percentile bin of (a) temperature, (b) precipitation, (c) specific leaf 
area (SLA) and (d) leaf phosphorus concentration. The vertical error bars show interquartile range of 
allocation fractions. 

Implications for Land Surface Models  

Carbon allocation, stocks and turnovers are poorly constrained in dynamic global vegetation models 
(DGVMs) (Friend et al., 2014; Negrón-Juárez et al., 2015; Malhi et al., 2011). Malhi et al. (2011) noted 
that a large dispersion in the allocation of NPP in tropical forests across models and a model bias 
towards high wood allocation. DGVMs allocate NPP to different carbon pools using three types of 
approaches: (1) a fixed allocation scheme; (2) dynamic allocation driven by allometric constraints; (3) 
dynamic allocation driven by resource availability (i.e. nutrients, water and light). The first approach 
sets fixed allocation coefficients for a given PFT, but large differences in allocation fractions within a 
PFT are reported (our Figure 4-4) (Taylor et al., 2019). De Kauwe et al. (2014) performed a model-data 
intercomparison at forest free-air CO2 enrichment sites, and found that the models using the second 
approach fail to reproduce the observed response of carbon allocation fraction to water and nutrient 
limitations, whereas those using the third approach are unable to estimate biomass accurately. 

In addition to allocation, processes related to turnover, in particular woody turnover times, determine 
carbon storage in biomass. Most of the current DGVMs use a fixed turnover rate (or mortality rate) for 
wood biomass and they do not explicitly simulate tree mortality due to fire, competition, insects and 
pathogens, etc. A few exceptions (e.g. LPJ and LPJ-GUESS) do not use a simple fixed value, and calculate 
mortality rate due to negative carbon balance, competition, harsh climate and fire (Xue et al., 2017). 
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Our gridded turnover time/rate of carbon pools may help improve model structure or 
parameterization schemes. 

Uncertainties and Limitations  

As any uncertainty in EO data used as input to CAT propagates into our optimized parameters, we 
estimate uncertainties in carbon allocation and turnover times (defined here as the ratio of the 
standard deviation and mean value, %) by using different NPP, AGB and LAI datasets in carbon 
allocation and turnover times. The uncertainties tend to be large in semi-arid and arid tropical regions, 
especially for woody turnover times (Figure 4-13). For wood allocation and turnover, large 
uncertainties in the dry tropics arise mainly from L-VOD AGB data, whereas uncertainty in leaf 
allocation and turnover come from NPP products. In the wet tropics, the uncertainty of NPP and LAI 
data make the major contribution to uncertainty of leaf allocations, leaf turnover and wood allocation, 
while uncertainty in wood turnover times is primarily attributed to uncertainty in NPP products. This 
implies that improved confidence in the observed tropical vegetation productivity and biomass would 
help us to better understand NPP–carbon cycle–climate interactions (Piao et al., 2020). 

 
Figure 4-13: The contribution of the uncertainties of carbon allocation and turnover time. (a)-(d) The 
percentage of standard deviation (%, relative to the mean values) of forest NPP allocation fractions, 
turnover time of biomass pools. (e)-(h) The contribution of uncertainty derived from the different 
sources of LAI (blue), NPP (green) and L-VOD AGB (red) datasets. Contribution from a certain variable 
is represented by a specific color, e.g. the red colored regions indicates the uncertainty is mainly from 
the L-VOD AGB datasets. 

It is important to recognise some caveats in our approach. The most critical one is that we only provide 
multi-year averages of carbon allocation and turnover times due to data limitations, but we know that 
allocation of carbon and its turnover time vary with climate and extreme events (Doughty et al., 2015; 
Phillips et al., 2004). We only analyzed the large-scale spatial variation of allocation and turnover in 
response to environmental conditions and plant traits, but more work should be done to explore 
temporal variations. Another caveat is that the grass NPP allocation and turnover time are less 
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constrained than the forest ones, because specific constraint data for grass is lacking. Furthermore, we 
did not address soil carbon storage, as we focus on the processes related to plant carbon allocation 
and turnover. Soil is a major store for carbon, and soil carbon storage will be influenced by the input 
of carbon to the soil compartment. Future work should investigate the interactions between plant 
allocation and soil processes. In addition, in this study carbon turnover times are assumed to be caused 
by natural and climate-induced mortality, but they are also partly affected by human disturbance and 
degradation, so high-resolution satellite imagery is needed to quantify forest loss. 

In this study, six years (from 2011 to 2016) of satellite-based biomass, NPP and LAI data have been 
amalgamated to constrain the underlying processes of the vegetation carbon cycle. Therefore, we 
generate pan-tropical maps at 25km resolution of forest and grass carbon allocation and turnover 
times, in which the parameter estimates are purely data-driven, and independent of plant functional 
types. The spatial variations of our data-driven carbon allocation and turnover times are in good overall 
agreement with observed estimates from forest plots. Our data-driven estimates show a universal 
trade-off between leaf productivity and leaf turnover times, as well as between wood productivity and 
wood turnover times. Moreover, we find canopy height is the most important factor influencing spatial 
gradients of wood and leaf carbon allocation, which are partly associated with temperature, water and 
nutrient availability. For the spatial variation of turnover times, abiotic factors, such as temperature 
and precipitation, play major roles in regulating wood turnover times, whereas biotic factors, such as 
SLA and leaf phosphorus concentration affect leaf turnover times. Our data-driven estimates of carbon 
allocation and turnover times provide a basis for more detailed exploration of these mechanisms in 
field studies, and may ultimately help improve model structure and the parameterization schemes 
used in Earth System Models. 

 

5. Tropical biomass change. Case study of impacts 
and legacy from the 2015-16 El Niño event  

Tropical forests hold the largest biomass pool on Earth and account for more than one-third of the 
total global net primary productivity (NPP) (Pan et al., 2011). Small changes in their growth and 
mortality can substantially affect the concentration of atmospheric CO2 and have a global impact 
(Phillips et al., 2009). The El Niño-Southern Oscillation (ENSO) leads to droughts impacting highly 
productive tropical forests, compounded with fires, increased diseases and insect attacks (Seidl et al., 
2017), which enhance tree mortality and reduce carbon storage, weakening the tropical forest carbon 
sink (Brienen et al., 2015; Mitchard, 2018). Previous observational and modelling studies reported that 
tropical regions switched from a carbon sink to a source as a result of drought associated with the 
latest severe El Niño event in 2015-2016 (Liu et al., 2017; Rödenbeck et al., 2018), and the subsequent 
recovery of forest carbon stocks has been quantified (Wigneron et al., 2020). However, few studies 
have explored the factors that control the spatial and temporal variations in forest carbon stocks 
during and after drought. 

The 2015/16 El Niño brought record-breaking temperatures and major drought in the tropics. Warmer 
and dryer conditions were close to those anticipated in future warming scenarios (Malhi et al., 
2018). Increases in the severity, duration and frequency of drought and heat stress associated with 
climate change could fundamentally alter the community composition, structure, and biogeography 
of forests (Allen et al., 2010; Brodribb et al., 2020). The advent of novel remote sensing data allows us 
to analyze the short-term and long-term responses of the biomass in tropical ecosystems to such a 
major climate disturbance. The short-term response, including a decline in photosynthesis due to 
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stomata closure, has been monitored through field and satellite observations during drought (Rifai et 
al., 2018; Malhi et al., 2015). The long-term response involving tree mortality, changes in forest 
structure and recruitment, may persist for several years after drought (Wigneron et al., 2020; Shenkin 
et al., 2018). Using the Random Forests (RF) model, a machine learning algorithm, we then identify the 
key climatic, edaphic and biotic factors controlling the regional declines and ongoing recovery of forest 
biomass. We also use the large-scale observation of forest vertical structure as a vegetation property 
to help explain the biomass variations, because drought not only impacts the mortality and growth of 
tree individuals, but also affects forest community composition (Brodribb et al., 2020). 

5.1.  Data and Methods 

5.1.1. L-VOD AGB data 

Satellite-based L-VOD (L-band microwave observation of vegetation optical depth) data at 25 × 25km 
resolution covering the period from 2010 to 2019 from the Soil Moisture and Ocean Salinity (SMOS-IC, 
v2) satellite is used for the analysis. The method used here to compute AGB from L-VOD in the same 
as the method used in Wigneron et al. (2020), Brandt et al. (2018) and Fan et al. (2019). That is, we use 
four different static AGB benchmark maps to calibrate the relationship between L-VOD and AGB for 
the entire tropical region, South America, Africa separately. The calibration process for only Southeast 
Asia is not used because of the limited SMOS observations in this region. The AGB benchmark maps 
include three pantropical maps (i.e. Saatchi et al., 2011; Baccini et al., 2012; Avitabile et al., 2016) and 
one map covering only the savannas and woodland of Africa (Bouvet et al., 2018). After the calibration, 
10 maps of L-VOD AGB are obtained, and the median of these 10 maps of monthly L-VOD AGB covering 
the period 2010-2018 are used in this study. Because of the poor quality of L-VOD data over water 
bodies, we remove the 25km pixels where the areal fraction of regularly flooded wetlands (RFWs) is 
more than 80%, using a global wetland map from Tootchi et al. (2019). 

5.1.2. Forest cover data 

In this study, we focus on the tropical intact evergreen forests (between 25°N and 25°S), which are 
defined by the ESA CCI land cover map of 2015 (300m resolution), the Hansen forest cover map for the 
year of 2000 and annual deforestation maps from 2000 to 2018 (25m resolution; Hansen et al., 2013). 
First, using the 300m resolution CCI land cover map, we label the 25km pixels in which more than 50% 
of the 300m-sized pixels are evergreen forests (classes ID 50, 160, 170). Second, for each 25km pixel, 
we calculate the percentage of the 25km pixels with forest cover < 90% or affected by deforestation, 
using the Hansen tree cover map. The 25km pixels with forest cover < 90% or deforestation higher 
than 20% are removed. 

5.1.3. Drought characteristics 

The Cumulative Water Deficit (CWD) is widely used to describe the characteristics of meteorologically-
induced drought in the tropics (Aragão et al., 2007). Based on precipitation data from NASA’s Tropical 
Rainfall Measurement Mission (TRMM, monthly, 0.25° resolution, TMPA/3B43 v7) and 
evapotranspiration data from the Global Land Evaporation Amsterdam Model (GLEAM, monthly, 0.25° 
resolution, v3.3a), we calculate monthly CWD for each pixel, as follow: 

𝐶𝑊𝐷9 = 𝐶𝑊𝐷9,) − 𝐸9 + 𝑃9  if  𝐶𝑊𝐷9 < 0 

𝐶𝑊𝐷9 = 0   if 𝐶𝑊𝐷9 ≥ 0 
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where 𝐶𝑊𝐷9 is the cumulative water deficit of the current month, which is equal to the cumulative 
water deficit from previous months (𝐶𝑊𝐷9,)) plus the difference between the precipitation of the 
current month (𝑃9) and evapotranspiration (𝐸9). For each grid cell, the standardized anomaly of CWD 
(ACWD) at the ith grid for the tth month (t = 1, 2,…,12) is calculated as: 

𝐴𝐶𝑊𝐷&,: =
𝐶𝑊𝐷&,: − 𝐶𝑊𝐷;,:jjjjjjjjj

𝜎(𝐶𝑊𝐷&,:)
 

where 𝐶𝑊𝐷;,:jjjjjjjjj and 𝜎(𝐶𝑊𝐷&,:)	 are the mean value and standard deviation (SD) of CWD at the ith grid 
for the tth month during the reference period (2000-2019). 

We use the monthly ACWD to identify the spatial extent, duration, severity, onset and end of the 
2015/16 drought in the tropical forest. For each grid cell, the ACWD is smoothed using the three-month 
running average to avoid a single wet month interrupting a long and consecutive dry period. The 
drought events which last < 3 months are not included in this study. Drought onset is defined as the 
first month with ACWD below the threshold of -1 SD, and the drought end is defined as the first month 
when ACWD exceeds the threshold of -1 SD. We defined the duration of drought as the period between 
the start and the end months of the drought event and the severity of drought as the median of ACWD 
during the drought period. 

5.1.4. AGB response and recovery 

We calculate the average monthly L-VOD AGB for the whole drought period, which lasted from Oct 
2015 to Mar 2016, so AGB15/16 = 𝐴𝐺𝐵;jjjjjjj  (i = Oct, Nov, Dec 2015, Jan, Feb, Mar 2016). The responss of 
AGB during the drought are calculated as the averages of AGB stocks during the 2015/16 drought 
period minus the averages of AGB stocks for the same months during the years 2014 and 2015 
(∆AGB14/15→15/16): 

∆AGB14/15→15/16 = AGB15/16 − AGB14/15 

We also calculate the average of AGB for the same months during the years 2016/17, 2017/18 and 
2018/19. The decrease and increase in AGB after drought are calculated as: 

Decrease in AGB after drought: AGBmin − AGB15/16 

Increase in AGB after drought: AGBmax – AGBmin 

where AGBmin is the minimum value among AGB15/16, AGB16/17, AGB17/18, and AGB18/19, and 
AGBmax is the maximum value of AGB after reaching AGBmin. The percentage of AGB recovery is the 
ratio of increase in AGB after the drought and the sum of decrease in AGB during and after the drought, 
calculated as: 

The percentage of AGB recovery: <=>!"#,	<=>!$%
<=>&'/&),<=>!$%

 

5.1.5. Variable importance and partial dependence 

To fit the AGB response during drought and recovery after drought, we use more than 20 predictor 
variables, including drought characteristics, background climate, soil property, forest structure, fire 
occurrence, and two categorical variables (Table 5-1). 

The predictor variables of drought characteristics used are pre-drought ACWD (ACWDpre), post-
drought ACWD (ACWDpost), drought severity, drought duration, soil moisture (SM) and vapor pressure 
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deficit (VPD) anomalies during drought and after the drought. Soil moisture data are from SMOS-IC 
satellite. VPD is calculated using re-analysis climate products from MERRA, 

𝑉𝑃𝐷 = 𝑆𝑉𝑃 − 𝐴𝑉𝑃 

𝑆𝑉𝑃 = 0.6108 × 𝑒
)6.%6×0"
%56.5+0"  

𝐴𝑉𝑃 = 𝑆𝑉𝑃 ×
𝑅𝐻
100

 

where SVP and AVP are saturated vapor pressure and actual vapor pressure (kPa), Ta is air temperature 
at 2m (oC), and RH is relative humidity at 2m (%). The predictor variables of background climate used 
are the average of temperature, precipitation and radiation during the drought period, and 
precipitation seasonality (SD of 12-month precipitation). The climatological monthly temperature, 
precipitation, and radiation are from the WorldClim database (https://www.worldclim.org). The 
predictor variable of soil properties is soil clay content (%) from SoilGrids (https://soilgrids.org). The 
predictor variables of forest structure from the Geoscience Laser Altimeter System (GLAS) onboard 
ICESat (Ice, Cloud, and land Elevation Satellite; https://nsidc.org/data/icesat) are canopy density (the 
proportion of an area on the ground covered by the tree crowns), canopy height (RH100; 100% energy 
return height), understory height (RH25; 25% energy return height), and the ratio of understory and 
canopy heights (RH25/RH100). The predictor variable of the occurrence of fire disturbance is fire 
radiative power (FRP) observations from the Global Fire Assimilation System (GFAS, Kaiser et al., 2012). 
In addition, two categorical variables are Continent (SA, AF, SEA) and the start of the recovery year 
(15/16, 16/17, 17/18). 

Table 5-1: The predictor variables used in Random Forest. 
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Variables Description Unit Original 
resolution Source 

Drought characteristics (8) 

Drought severity 
The median of anomaly 

cumulative water deficit (ACWD) 
during the drought period 

1 0.25 degree 

See Methods 

Drought duration The number of months with 
ACWD < -1 SD months 0.25 degree 

ACWDPRE 
The median of ACWD during the 

same drought months but in 
2014/15 

1 0.25 degree 

ACWDPOST 
The median of ACWD during the 
same drought months but in the 
subsequent years after 2015/16 

1 0.25 degree 

∆SM14/15→15/16 
The mean of soil moisture (SM) 
anomalies during the drought 

period 
1 25 km 

SMOS-IC v2 

∆SM15/16→18/19 
The mean of SM anomalies 

during the same drought months 
but in the years after 2015/16 

1 25 km 

∆VPD14/15→15/16 
The mean of vapor pressure 

deficit (VPD) anomalies during 
the drought period 

1 0.5 degree 
MERRA2 

See Methods 
∆VPD15/16→18/19 

The mean of VPD anomalies 
during the same drought months 

but in the years after 2015/16 
1 0.5 degree 

Soil properties (1) 

Soil clay Soil clay content (soil depth: 
30cm) % 1/20 degree SoilGrids 

database 

Forest structure (4) 

Canopy density 
The proportion of an area ion 
the ground covered by  tree  

crowns  
%         ~75 m 

GLAS database 
RH100 100% return energy height, or 

top-canopy height m ~75 m 

RH25 25% return energy height, or 
understory height m ~75 m 

RH25/RH100 The ratio of understory and 
canopy height 1 ~75 m 

Background climate conditions (4) 

Temperature The climatological temperature 
during the drought month 

oC 1 km 
WorldClim 
database 

Precipitation The climatological precipitation 
during the drought month mm 1 km 
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We use Random Forest (RF) models (Breiman, 2001) to quantify how important each predictor variable 
is in determining the fitted values of ∆AGB14/15→15/16 and the percentage of AGB recovery. Model 
performance metrics assessed were the mean absolute error (MAE) and the R-squared value (R2). The 
selected model has the smallest MAE and the highest R2. The spatial patterns of the RF-predicted 
values are compared with the observed values in Figure 5-1.  

 
Figure 5-1: Spatial patterns of the AGB changes during the drought (∆AGB14/15→15/16) and the 
percentage of AGB recovery estimated (a), (c) by L-VOD AGB data and (b), (d) by Random Forest. 

The observed recovery percentage could be classified into two categories, namely with recovery 
percentage less than 100% and equal to/greater than 100%. We tested if the RF-predicted recovery 
percentage could be classified into the proper category (Figure 5-2 and Table 5-2). Partial dependence 
plots based on RF are used to visualize the relationship between predictor variables and 
∆AGB14/15→15/16, the percentage of AGB recovery, independent of other predictor variables. The 

Radiation The climatological radiation 
during the drought month W/m2 1 km 

Precipitation seasonality 
The Standard Deviation of the 

climatological monthly 
precipitation within a year 

mm 1 km 

The occurrence of fires (2) 

FRP during the drought 
The mean of Fire radiative 

power anomalies during the 
drought period 

MW 
 

Global Fire 
Assimilation 

System 
FRP after the drought 

The mean of Fire radiative 
power anomalies during the 

same drought months but in the 
years after 2015/16 

MW 
 

AGB changes (1) 

∆AGB14/15→15/16 
Above-ground biomass changes 

during the drought period in 
2015/16, relative to the same 

period in 2014/15 
MgC/ha 25 km SMOS-IC v2 

Categorical variables (2) 

Continent Three labels. SA: South America, 
AF: Africa, SEA: Southeast Asia - 25 km - 

Start year of recovery 
The start year of recovery is the 
AGB lowest year. Three labels: 

15/16, 16/17 and 17/18 
- 25 km - 
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predictor variables with flat response functions, i.e., no change in AGB response and recovery with the 
predictor variable, have negligible effect on estimation of response and recovery. 

 
Figure 5-2: Spatial pattern of AGB fully-recovered and not fully recovered areas estimated (a) by L-
VOD AGB data and (b) by Random Forest. The confusion matrix of the classification is in Table 5-2. 

Table 5-2: The confusion matrix of the classification results using the Random Forest model. The 
classification is based on the RF-predicted and observed percentage of AGB recovery (%). “Yes” 
indicates that, by 2019, forest where AGB decreased has fully recovered to its pre-drought AGB level. 
“No” indicates that, by 2019, forest where AGB decreased has not fully recovered to its pre-drought 
AGB level. 

 
Predicted: 

No 

Predicted: 

Yes 

Actual: 

No 

39.6% 

(Correct) 

9.2% 

(Incorrect) 

Actual: 

Yes 

9.4% 

(Incorrect) 

41.9% 

(Correct) 

 

5.2. Severity, duration and onset timing of 2015/16 drought 

Here, we assess the extent and severity of the 2015/16 drought using the standardized anomaly of 
cumulative water deficits (ACWD) derived from monthly precipitation measured by the Tropical 
Rainfall Measuring Mission (TRMM) and evapotranspiration from the Global Land Evaporation 
Amsterdam Model (GLEAM; Marten et al., 2017) (see section 5.1.3). This study only focuses on the 
tropical intact evergreen forests, using a conservative intact forest cover mask to avoid 
misclassification of drought over the non-forested or anthropogenic disturbance-affected regions (see 
section 5.1.2). Since mid-2015, more than 55% of tropical intact evergreen forests in South America 
(2.53 million km2), 34% in Africa (0.40 million km2) and 42% in Southeast Asia (0.19 million km2) were 
exposed to ACWD < -1 SD for more than three months (SD is the standard deviation during the period 
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2010-2019). The patterns shown in Figure 5-3 illustrate the severity (Figure 5-3a), duration (Figure 5-
3b) and onset time (Figure 5-3c) of the 2015/16 drought. The drought first hit Southeast Asia, then 
Africa and South America (Figure 5-3c). Drought duration and severity differed spatially, and the areas 
under more severe drought tended to have a longer-lasting exposure. The epicenter of drought is in 
central Amazonia, where rainforests experienced ACWD < -2 SD for more than 8 months. By contrast, 
the drought was less severe for the forests in eastern Amazonia and in most parts of Africa and was 
relatively short-lasting (less than 6 months) in western Africa and Southeast Asia. Note that using the 
MODIS ET product instead of GLEAM to calculate ACWD gives similar patterns of drought severity and 
duration. 

 
Figure 5-3: Spatial patterns of the (a) severity, (b) duration and (c) onset time of the 2015/16 drought 
over the tropical evergreen forests. The severity, duration and onset of drought are identified based on 
the standardized anomaly of monthly Cumulative Water deficit anomalies (ACWD). The left-hand 
panels show the fractional area of tropical forests sorted into different categories of drought severity, 
duration and onset time. The fractional area is split into values for three continents, i.e., South America 
(SA), Africa (AF) and Southeast Asia (SEA). The non-forest dominated regions, forest losses regions, 
flooded and lake areas are masked out. 

5.3. Changes in AGB during and after drought 

We examined the impact of the 2015/16 drought on forest AGB using L-VOD (L-band vegetation optical 
depth) data (Wigneron et al., 2017). Changes in AGB stocks during the 2015/16 drought period, relative 
to the same month during the pre-drought year (∆AGB14/15→15/16, see Method for the definition of 
this notation) are calculated for 25km pixels over tropical intact evergreen forests that were exposed 
to drought.  
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Figure 5-4: Spatial patterns of forest AGB changes during and after the drought. (a) Changes in AGB 
over the drought period in 2015/16, relative to AGB over the same period in 2014/15 
(∆AGB14/15→15/16); (b) Decreases in AGB after the drought; (c) Increases in AGB after reached the 
lowest AGB point; (d) The start year of AGB recovery, i.e. the year with the lowest AGB value. Green 
areas correspond to areas where AGB has not reduced over the period of 2015 and 2016. Yellow areas 
correspond to areas where AGB in 2015/16 was the lowest and regrows immediately after the drought. 
Purple areas correspond to areas where AGB has not started to recover by 2019. (e) The percentage of 
AGB recovery, i.e., the increase in AGB after the lowest point divided by the sum of decrease in AGB 
during and/or after the drought. 

The results shown in Figure 5-4a indicate an immediate AGB reduction during the 2015/16 drought 
period over more than 60% of drought-affected intact wet forests, particularly in south-eastern 
Amazonia, and in most forests of Africa and Borneo of Southeast Asia. By contrast, wet rainforests in 
central Amazonia showed an increase in AGB during the drought period. Lagged tree mortality post-
drought but with no significant reduction in the growth of surviving trees has been observed at one 
rainfall exclusion experimental site in Caxiuanã (Rowland et al., 2015), at ecological monitoring sites in 
the Amazon during the 2010 drought (Doughty et al., 2018), and in a variety of tree genera globally 
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(Trugman et al., 2018). The lack of suppressed tree growth or enhanced growth during the drought 
may be due to increased canopy photosynthetic capacity (Saleska et al., 2016) from greater radiation 
availability (Guan et al., 2015), flushing of young and more efficient leaves in the early drought stages 
(Wu et al., 2016; Chen et al., 2020), and increased vapor pressure deficit (VPD) resulting in an increase 
of water use efficiency offsetting the regulation of stomatal closure, leading to a net increase of canopy 
photosynthesis (Green et al., in review). 

 
Figure 5-5: Spatial patterns of the median of ACWD (i.e. the severity of drought) over the same drought 
month in 2016/17, 2017/18 and 2018/19. Note that the GLEAM ET data of year 2019 are not available, 
so we use a constant ET of 100 mm month-1 to calculate ACWD in 2019 (Aragão et al., 2007). 

The post-drought trajectories of AGB shown in Figure 5-4b and 5-4c are more complex and differ 
among regions. On the one hand, a lagged persistent decrease in AGB can be seen in Figure 5-4b after 
the termination of the 2015/16 drought in north-central and eastern Amazonian and western Congo 
forests (Figure 5-4b), despite the gradual recovery of rainfall and no new drought event (Figure 5-5). 
The occurrence of fires in subsequent years, in particular during 2017/18, may be partly responsible 
for additional AGB reduction after the drought, for example in the eastern Amazon (Figure 5-6). A 
lagged decrease of AGB is consistent with findings based on satellite laser altimeter data of a lagged 
loss of height over intact forests in the epicenter of the 2005 drought in the Amazon (Saatchi et al., 
2013; Yang et al., 2018). On the other hand, after reaching the lowest AGB point, the trend of AGB 
reversed and more than 80% of the regions where AGB losses occurred showed a recovery of AGB 
before 2019 (Figure 5-4c). Divergent post-drought recovery trajectories are also evident. Some forests 
regrew after the drought of 2015/16 whereas others declined in a few subsequent years. As shown in 
Figure 5-4d and Figure 5-6, quickly-recovering forests correspond roughly to those previously exposed 
to moderate or light drought in eastern Amazonia, most parts of Africa and Southeast Asia. Conversely, 
late-recovering forests are in south-central Amazonia where the drought was more severe. The regions 
where AGB started to recover earlier also show a higher recovery level (Figure 5-4e). By 2019, more 
than about 44% of intact forests where AGB decreased have fully recovered to their pre-drought AGB 
level. The regions where AGB did not show any recovery or did not fully recover in 2019 include regions 
in the epicenter of the drought – north-central Amazonian forests, as well as dryer eastern Amazonia 
and western African regions near the edge of the intact tropical forest biome. Trees near the forest 
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edges are most likely more vulnerable to intense fires, canopy drying, and degradation (Brando et al., 
2014), which could favor tree mortality and a lack of AGB recovery.  

 
Figure 5-6: The relationship between the drought severity and the start year of AGB recovery, that is 
also the year with the lowest AGB value. The fractions of the study area (%) with different start year of 
AGB recovery are shown. 

5.4. Factors influencing AGB changes during and after drought 

The factors that determine AGB changes during drought and its subsequent trajectory are complex 
and can be related to exposure and vulnerability of forests. We used Random Forests (RF) models (ref. 
28; see section 5.1.5) to investigate the importance of more than twenty factors, including drought 
characteristics, background climate, soil properties, forest structure and fire occurrence (Table 5-1). 
Altogether, these factors explained 67% of the variation of the observed changes in AGB during 
drought (∆AGB14/15→15/16; Figure 5-7) and 43% of the variation of the observed percentage of AGB 
recovery relative to all the losses of AGB (log-transformed) (Figure 5-8). The Random Forest models 
exhibit good predictive skill in reproducing the observed spatial patterns of AGB changes during 
drought and their recovery percentage (Figure 5-1). Despite biases in predicting locally the recovery 
percentage, the Random Forest model properly identified regions with full versus incomplete recovery, 
with 81% accuracy (Figure 5-2; confusion matrix in Table 5-2). Partial dependence plots to illustrate 
the non-linear dependence of AGB changes on different predictors are shown in Figures 5-7 and 5-8 
for the six most influential factors in each best Random Forest model.  

5.4.1. AGB changes during the drought 

Figure 5-7 shows that soil moisture changes during the drought year (∆SM14/15→15/16) are the most 
influential factor associated with AGB changes of ∆AGB14/15→15/16. Unsurprisingly, larger soil 
moisture deficits relative to the pre-drought level are associated with more losses of AGB during the 
drought. The previous study assessed the forest aboveground biomass during 2005 drought using long-
term monitoring plot observations, indicating that these losses during the drought were mainly driven 
by large mortality increases rather than by declines in growth (Phillips et al., 2009).  
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Figure 5-7: The importance of predictor variables in fitting the AGB changes during the drought 
(∆AGB14/15→15/16), and partial dependence plots for the 6 most important variables. In the partial 
dependence plot, the red line is the partial dependence curve, showing the relationship between one 
specific predictor variable and ∆AGB14/15→15/16, independent of other predictor variables. Black 
lines are the individual conditional expectation curves, displaying the dependence of ∆AGB14/15→
15/16 on corresponding predictor variables for each pixel. Ticks on the x-axis show the deciles of the 
distribution of the predictors. 

High soil clay content is also strongly positively associated with AGB reduction during drought. Two 
possible mechanisms may explain this. First, the higher wilting point of clay-dominated soils limits soil 
moisture available for plant roots (Frensham et al., 2015). Second, the higher nutrient availability in 
clay soils may play a detrimental role during drought, as forests growing in clay soils with a larger 
nutrient content, particularly phosphorus, may be adapted to higher nutrient use, leading to a higher 
embolism risk under severe water stress (Gessler et al., 2017; Soong et al., 2020). The RF model also 
indicates that a longer drought duration is associated with an AGB increase during the drought year in 
north-central Amazonia (Figure 5-3b and Figure 5-4a). This is likely a confounding effect of the fact that 
in this region, the available water resource is always high and trees have deep rooting systems, which 
enable them to access water at deep depths. The RF model also indicates that a higher VPD is 
associated with an increase of AGB during drought. A possible reason is that in the wet tropics, the 
increase in intrinsic water use efficiency (iWUE) coincident with higher radiation, better diffusion in 
dry leaves during drought may translate into high photosynthesis despite stomatal closure at high VPD 
levels (Zhang et al., 2019; Green et al., in review). Background mean annual temperature with little 
spatial variation (Burton et al., 2018) is ranked 6th in terms of importance in the RF models, thus having 
little effect on AGB response during drought. This differs from the results from space-for-time 
substitution which demonstrate a limiting long-term effect of high temperatures on photosynthesis 
(Huang et al., 2019), and on carbon stocks, carbon gains and carbon turnover rate (Sullivan et al., 2020).  

5.4.2. AGB recovery 

As shown in Figure 5-8, AGB changes during the El Niño drought year is the factor most strongly 
associated with the percentage of AGB recovery, according to our RF model. Pixels with a more 
negative ∆AGB14/15→15/16 are generally associated with no legacy of AGB recovery after the drought 
(Figure 5-9) so that the minimum of AGB was reached just after the drought period.  
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Figure 5-8: Same as Figure 5-7, but for the log-transformed the percentage of AGB recovery after 
drought (excluding no recovery pixels). The predictors in bold are the factors strongly associated with 
∆AGB14/15→15/16 in Figure 5-7. 

Partial dependence graphs in Figure 5-8 show that greater losses of AGB during drought are associated 
with a lower recovery percentage (recovery percentage was calculated as the increase in AGB after the 
lowest AGB point divided by the sum of decreases in AGB during and after the drought, see section 
5.1.4). Conversely, regions with positive ∆AGB14/15→15/16 during the drought in central Amazon 
tend to show lagged AGB loss after the drought and lower recovery (Figure 5-9 and Figure 5-8). Thus, 
the AGB change during the drought, irrespective of its sign, is a strong predictor of the post-drought 
AGB recovery. Soil moisture changes during the drought year (∆SM14/15→15/16) and soil clay 
content, which were the strongest two predictors of the AGB response during drought, are also 
positively associated with the percentage of AGB recovery (Figure 5-8). Long-lasting drought is 
associated with low recovery level of AGB (Figure 5-8). Apart from those factors (i.e. 
∆AGB14/15→15/16, ∆SM14/15→15/16, soil clay content and drought duration) found to be influential 
for AGB changes during drought, the start year of the AGB recovery plays the second most important 
role in explaining the post-drought AGB recovery percentage: the sooner forests start to recover, the 
higher recovery percentage they can reach within the observed time-frame.  

 
Figure 5-9: Relationship between AGB changes during the drought (∆AGB14/15→15/16, Figure 5-4a) 
and AGB changes after the drought. 
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Figure 5-10: (a) The relationships between the understory height (RH25), canopy height (RH100) and 
their ratio γ. (b) Spatial pattern of the ratio of RH25 and RH100. 

In addition, we found that the vertical structure of forests, referred as to γ and defined as the ratio of 
understory height (RH25) to top height (RH100) from satellite laser altimeter data (Harding and 
Carabajal, 2005) also positively influences the recovery of AGB after the drought. γ is higher in forests 
with closed canopy where the understory height is closer to the top canopy height. Generally, γ 
increases spatially with understory height (Figure 5-10). Some forests with high canopies (≥ 30m) and 
low γ (< 0.3) are geographically distributed near to the intact forest biome edges (Figure 5-10), and 
may be a mosaic of forests of variable height. While most previous studies on forest dynamics looked 
at total canopy height only (e.g. Yang et al., 2018; Bennett et al., 2015; Stovall et al., 2019), the 
importance of accounting for forest structure has been increasingly recognized., and canopy structural 
complexity and vertical canopy profile have been used to predict forest dynamics (Condit et al., 1996; 
Rödig et al., 2018; Stark et al., 2012; Fahey et al., 2015). In Figure 5-11, we compare the start year of 
recovery and the mean annual AGB recovery percentage between high γ (≥ 0.3) and low γ (< 0.3) forests 
for different levels of soil water deficit. In all cases, high γ forests have a stronger capacity to recover 
than low γ ones. A possible explanation is that low water availability and high evaporative demand 
make it difficult for tall dominant trees with crowns closing the upper canopy to maintain leaves and 
hydraulic safety (da Costa et al., 2010; Arellano et al., 2019). In contrast, understory/small trees are 
more likely to survive during and after drought, according to meta-analysis and theoretical model 
results (Trugman et al., 2018; Bennett et al., 2015). Thus, understory trees can even enhance their 
growth when more light reaches the understory and competition for water is alleviated when there is 
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mortality or leaf loss from tall trees (Rowland et al., 2015; McDowell et al., 2018). This suggests that a 
loss of carbon due to mortality of tall trees could be offset by carbon gains in understory trees, 
explaining why forests with a high γ were found to recover better. 

 
Figure 5-11: (a) The start year of AGB recovery and (b) the percentage of AGB recovery per year (% 
per year) of canopy-closed forests where the understory height is close to the top canopy height (γ≥0.3), 
and forests with low understory (γ<0.3). In (a), the fraction of study area (%) with different start year of 
AGB recovery are shown. In (b), the median of the percentage of AGB recovery per year (% per year) 
are calculated for different levels of soil moisture deficits during the drought year. 

The tropical drought in 2015/16 by ENSO occurred primarily in the wet season. Following previous 
studies (Wigneron et al., 2020; Brandt et al., 2018; Fan et al., 2019), our results of forest AGB changes 
during the drought period (wet season) are retrieved from L-VOD dataset, based on the assumption 
that seasonal averages of vegetation water content and above-ground biomass are correlated over 
time. However, water percolation into the ground/roots might lead to the changes in vegetation water 
content lagging behind the biomass (Feldman et al., 2018), which could increase uncertainty in the L-
VOD-derived biomass estimates. Also, L-VOD product is known to have reduced sensitivity in high 
biomass regions, and this could result in underestimation of AGB (Wigneron et al., 2020). 

As a consequence, forest AGB changes during the 2015/16 drought, both positive and negative, are 
associated with drought severity (soil water deficit) and duration, as well as with soil clay content. AGB 
recovery after the drought is influenced by previous AGB losses, modulated by climatic water deficit, 
soil clay fraction and vertical forest structure. Note that we found the same influential variables for 
absolute AGB recovery after the drought as for relative changes. Our results shed light on the 
attribution of AGB changes during and after droughts to drivers, showing that predicting the long-term 
impact of drought on forest communities is challenging, because drought also influences demographic 
processes beyond immediate growth and mortality during drought exposure. The driving role of forest 
structure suggesting compensatory responses of taller trees and understory trees to drought needs to 
be confirmed by ground-based inventories and drought experiments results. Moreover, as the climate 
extreme event is expected to move towards more compound, frequent, severe and long-lasting in the 
future (Seveviratne et al., 2012; Zscheischler et al., 2018), a better understanding of the response and 
recovery of tropical forest dynamics during and after drought can provide valuable information for the 
climate modelling community, in order to more accurately predict ecosystem response to drought 
events under future climate change scenarios.  
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6. Biomass change products  
 

There are two main ways of estimating biomass change, a change in the signal or a difference in 
estimated biomass values over time. Changes in sensor signals are difficult to use as multiple sensors 
with different characteristics cover different time periods. 

The most promising sensor for which signal change can be transformed into biomass (AGB) change is 
the SMOS-IC L-band VOD that was found to be linearly related to biomass. This relationship was used 
to infer temporal changes since 2010. However, L-VOD has some limitations in tracking biomass 
changes and its resolution is coarse, so that biomass changes at its 25 km gridded resolution cannot 
be easily attributed to different processes, such as e.g. deforestation, degradation and forest regrowth 
occurring in the same pixel: 

1) Values of AGB change are provided in each 25 km resolution grid-cell in which both forest AGB loss 
and gain can occur. So L-VOD gives an integrated estimate of biomass change but will require additional 
data to attribute the observed changes to different sub-grid processes in case of highly dynamic AGB 
change processes that have different signs, such as in the tropics, where we may have primary forest 
deforestation, secondary forest growth, secondary forest deforestation, fires, degradation, etc. in the 
same 25 x 25 km grid cell. 

2) The signal of dielectric properties of vegetation on sub-annual time scales related to changes in 
water content is hard to filter from biomass change and, for applications like those in Section 5, we 
have used mean L-VOD over a period of two years, or only wet season maximum L-VOD values. 

3) Possible saturation of L-VOD-AGB relations for AGB > 200 t ha-1 Further, the  validation of L-VOD 
against plot-scale point data is challenging because L-VOD data reflect the status of an entire area of 
25 x 25km, not that of a relatively small plot, and the median or tall trees are more easily to be 
measured relative to the small trees by inventories using in-situ height and and DBH to infer tree 
biomass. This means L-VOD AGB data can underestimate AGB and AGB change in dense forest regions, 
but we don’t know the extent of this possible systematic error in L-VOD AGB.   

4) The quality of VOD (here SMOC-IC L-VOD) depends on the region where it is applied because of RFI 
(non-stationary noise, unfortunately). RFI can partly be diagnosed from the difference between 
ascending and descending orbits. From the experience of LSCE working with the team of J.P. Wigneron, 
VOD appears reliable for AGB change in the tropics and Australia. It has also been used successfully in 
Southern China and preliminary results from Siberia look good. North America and Europe need more 
work on the RFI filtering.   

Nevertheless, a number of successful applications of L-VOD for AGB change have been produced 
recently and are illustrated below. 

1) Consistency between combining low resolution L-VOD datasets and high-resolution datasets (e.g. 
forest cover change multiplied by static AGB at high resolution, or optical sensor-based AGB changes 
like Baccini et al., 2017) was shown to be achievable in regions where AGB is highly dynamic, such as 
some Amazon regions or Southern China (Figure 6-1). However, for regions that are less dynamic, it 
will be more difficult to assess smaller signals. L-VOD and forest area change from high resolution data 
are very well correlated for Amazon deforestation pixels (Figure 3; Qin  et al. Nature Climate, 2021).  
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Figure 6-1: The link between Amazon deforestation (area loss) and L-VOD. 

The global biomass loss derived from L-VOD also agrees well with forest area loss in the tropics (the 
two datasets are independent), as shown in Figure 6-2 (Fan et al. 2019). 

 
Figure 6-2: The correspondence between L-VOD and Landsat-derived forest loss. 

 

Very good correspondence was observed (Figure 6-3) in Southern China between MODIS and Landsat 
C stocks and L-VOD, and changes of C stocks from SMOS in this region, which is experiencing a fast 
change in management (Tong et al., 2020). Similarly, AGB loss from L-VOD in 2019 from Australian fires 
and forest area loss from MODIS-PALSAR are comparable (Qin et al. Nature Climate 2021).  
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Figure 6-3: Corresponding changes in AGB retrieved from L-VOD for China and Australia. 

 Measuring biomass change is not just an issue of the biomass difference. A change of say 40 t/ha in a 
low biomass forest may be measurable with good accuracy while for a high biomass forest it may be 
less than the measurement noise. Two numbers are essential for quantifying the error in biomass 
change: bias and precision (which is independent of bias and quantifies the scatter in the estimates). 
Both of these may depend on the true value of AGB. When averaging multiple estimates, e.g. several 
times of year, and if the bias for every estimate is the same, the precision will improve but not the 
accuracy if errors have a temporal autocorrelation. If the bias is constant over time or between 
products from two sensors, it can still affect the estimated change of AGB. The worst case is when bias 



 

Ref CCI Biomass Climate Assessment Report v3 

 

Issue Page Date 
3.0 64 14.07.2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

changes over time, e.g. when using two different sensors. Then the change of AGB can be biased both 
by the bias of each sensor /product and the bias changes over time. 

There are therefore two relevant questions: How likely is a biomass change to be observed (and will 
prior knowledge help)? How accurate is the change estimate (which depends on knowing the error 
properties of the AGB estimates)? Answering the second question is difficult if the bias or precision 
varies with AGB, as was been seen in the GlobBiomass or CCI Biomass products; we therefore need to 
develop a bias and precision model for the data. An error model should be developed which could vary 
depending on biomass level and region; without this we cannot approach this problem in any real 
quantitative sense. The validation exercise is therefore crucial as it should provide the basis for this, 
but we can also use the assessment exercises by Gamma and WP4000 to offer insight (and, even 
better, numbers). 

From a global modelling user point of view, notional accuracy requirements for change mapping can 
be based on DGVM simulations at 0.5° (typically ≈ 1 Mg ha-1 per 0.5° model grid cell). However, in the 
real world, within a 0.5° grid cell some areas are losing and some gaining biomass. So this notional 
accuracy at 0.5° requirement has to be split into accuracy of loss (subgrid) and accuracy of gain from 
regrowth (subgrid) when using high resolution EO data to arrive at a mean accuracy at 0.5° for each 
model grid-cell when using high resolution datasets like CCI Biomass (100m) or Saatchi et al. Biomass 
maps (1 km). AGB gains in growing forest are a function of prior AGB. Further, AGB gains at low AGB 
should be easier to measure than lower AGB gains at high AGB, due to, e.g. saturation at high AGB and 
smaller growth for high AGB systems. This means accuracy at 0.5° will depend on the proportions of 
high and low biomass, which differ between regions. 

7. Forest edge biomass carbon deficits in Africa 
African forests show fragmentation that causes forest degradation near forest edges. The impact of 
fires used for slash-and-burn on forest edge effects remains unclear. Using high-resolution (30 m × 30 
m) satellite-based forest cover and the CCI biomass data sets, we found that edge effects extend 
0.11,!.!8+!.!A km (median and interquartile range) and	0.15,!.!#+!.!B km into moist and dry forests. The 
biomass within the forest edge zones has a total carbon deficit for the African continent of 4.1 Pg C 
(16.1,#.B+7.! Mg C ha-1). Fires occurred in 52% of the forest edges and produce a carbon deficit higher by 
5.5,%.B+8.5 Mg C ha-1 than non-fire edges. This effect can be explained by direct impact (fires intruding 
into forests) and indirect impact (increasing canopy dryness). If small-scale slash-and-burn practices 
continue, increasing fragmentation during 2010-2100, we predict a cumulative committed carbon loss 
from edge effects of 0.54-4.6 Pg C, which could be avoided by implementing dedicated forest 
protection policies, supported by satellite monitoring of forest edges. African tropical forests are the 
largest stores of biomass carbon in terrestrial ecosystems but are exposed to anthropogenic 
disturbances causing deforestation and degradation and to fires. Estimates of carbon losses from land 
use and land cover change (LULCC) and forest degradation may be underestimated because small-
scale disturbances are not captured with moderate to high (Landsat) resolution sensors. Small-scale 
disturbances are increased by fragmentation, caused by diverse human activities such as logging, road 
development, cattle ranching and small-scale farming, which leads to small and irregularly shaped 
forest patches, increasing the area of forest edges. Further, close to disturbance affected areas,  drying 
conditions and enhanced wind turbulence, tend to make biomass carbon e lower within the forest 
edge zones than in the forest interior (i.e. edge effects) as observed from field studies and using remote 
sensing data with relatively coarse resolution.  

The African forest is one of the most productive and high biomass-density ecosystems in the world, 
but it is threatened by growing timber demands and fast population growth increasing shifting 
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cultivation. In the central Congo basin, LULCC appears to have shifted from large-scale industrial 
deforestation to clearing by smallholders for farming, leading to higher forest fragmentation. Lower 
precipitation, soil moisture and evapotranspiration in the vicinity of burnt areas slows forest recovery 
and may enhance edge-induced carbon loss.  

The material in this section has been published in Zhao et al. (2021). 

7.1. Forest Edge characteristics and AGB deficits compared to interior forests  

We combined high-resolution remote sensing datasets of forest cover and forest AGB around the year 
2010 from the CCI project (Globbiomass) with burned area data from the ESA CCI Fire project (Chiuveco 
et al. 2019) to forest edge AGB deficits at fire and non-fire edges over grid cells of 0.25°. Forests were 
divided into moist and dry forests. Two indicators were used to characterize edge effects on AGB, scale 
and magnitude. The scale parameter (km) is defined as the distance to the edge at which AGB equals 
90% of that of the interior forest. The magnitude parameter is the relative difference in AGB between 
the edge and interior of forests. We estimated the AGB carbon deficit within forest edge zones (i.e., 
where the distance to edge was smaller than the scale in each grid cell). The carbon deficit is the 
difference in AGB between forest edges and interior forests, because the present edges include both 
long-established edges and recently created ones. The long-established edges reflect an equilibrium 
state of carbon stocks and do not result in any additional carbon change exchanged with the 
atmosphere, while recently created edges result in carbon loss and represent an elusive component 
of global LULCC emissions.  

 
Figure 7-1: Scales and magnitudes of forest edge in Africa. (a) and (d) are the frequency distributions 
of scales and magnitudes; (b-c) and (e-f) are maps of scales and magnitudes. Shading in (a) and (d) 
indicates the weighted interquartile ranges, and dashed lines indicate weighted medians. Gray area in 
(b), (c), (e) and (f) indicates grid cells without detected edge effects (27% and 18% of all grid cells for 
moist and dry forests). 

The scales of edge effects for moist and dry forests are	0.11,!.!8+!.!A km (median and interquartile range 
weighted by forest area) and 	0.15,!.!#+!.!B km, and magnitudes are 36,B+)!	% and 54,))+)%%, respectively 
(Fig 7-2). Edge effects have longer scale and greater magnitude in dry forests than in moist forests. We 
detected more grid cells with an edge effect in dry forests. Both moist and dry forests surrounding the 
Congo basin show edge effects with higher scales and magnitudes than in other areas (Fig. 7-2). Large 
edge effects were also found in the dry forests of regions along the Guinean gulf. Total AGB carbon 
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deficit over the African continent over edge areas is 4.06 Pg C (16.1,#.B+7.! Mg C ha-1, median and 
interquartile) (Table 7-1), partitioned into 3.4 Pg C in dry forests and 0.66 Pg C in moist ones. 

Table 7-1: Carbon deficit from edge effects, fire-increased carbon deficit and area with edge effects. 
Note that carbon deficit from edge effects includes fire-increased carbon deficit. The weighted median 
of density of carbon deficit and density of fire-increased carbon deficit are shown in the table. 

 Moist forest Dry forest Total 

Carbon deficit (Pg C) 0.66 3.4 4.06  

Density of carbon deficit (Mg C ha-1) 19.1 15.4 16.1 

Fire-increased carbon deficit (Pg C) 0.077 0.82 0.90 

Density of fire-increased carbon deficit 
(Mg C ha-1) 

3.8 6.4 5.5 

Area with edge effects (ha) 3.3×107 1.8×108 2.1×108 

 

7.2. Fire impacts on edge effects 

Next, we considered forest edges with at least one fire event during 2004-2009. The scales of those 
fire related edges are higher in most grid cells (Fig. 7-2). The patterns of fire impact on the magnitude 
parameter are similar to those observed for the scale of edges. Fires increase the magnitudes by 
14,7+)A% and 10,#+7% in 70% and 61% of the grid cells in moist and dry forests. Fires edges have a higher 
carbon deficit by 0.90 Pg C (5.5,%.B+8.5 Mg C ha-1), accounting for 22% of the total carbon deficit (Table 1). 
Most of the fire-related increased carbon deficit is in dry forests (0.82 Pg C, 6.4,%.B+8.8 Mg C ha-1) rather 
than in moist forests (0.077 Pg C, 3.8,).6+5.% Mg C ha-1) (Table 1). Two mechanisms relating to fire impact 
on edge effects were identified: direct fire intrusion into forests and indirect changes in local 
atmospheric circulation and canopy dryness. The first mechanism was studied through the distance 
that fires burn into a forest (fire distance) and the second through the difference in Bowen Ratio (β) 
between fire and non-fire edges (Δβ), where β  is the ratio between sensible and latent heat fluxes. 
The value of β for different pixel types follows the order: moist forest < dry forest < non-fire edge < 
fire edge (Fig 7-2) 

In the published study (Zhao et al. 2021) these results were used to make future projections of edge 
carbon losses using a downscaling of forecasts of African deforestation areas in 2100 obtained from 
two Representative Concentration Pathways (gross forest loss area = 1.2×107 ha and 9.7×107 ha in 
RCP2.6 and RCP8.5). Future work could include the use of high-resolution fire datasets from Sentinel-
2 (Ramo et al. 2021) that include small fires and show a 80% larger burned area in the African 
continent, and more recent CCI maps. 



 

Ref CCI Biomass Climate Assessment Report v3 

 

Issue Page Date 
3.0 67 14.07.2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

 
Figure 7-2: Difference of forest edge effects at fire and non-fire edges (Δscale, fire minus non-fire, a-b; 
Δmagnitude, c-d) for moist and dry forests and ΔScale change with Δβ (enhanced Bowen ratio) and fire 
distance (e-f). The scale and magnitude parameters that characterize the biomass deficit at forest edges 
are fitted from high resolution CCI Globbiomass data. The differences in edge effects (Δscale and 
Δmagnitude) are regarded as the fire impacts on edge effects. Numbers in (e-f) are the total number of 
0.25° grid cells located in each Δβ and fire distance interval. Only grid cells with successfully fitted 
curves at both fire and non-fire edges and with available β at both fire and non-fire edges are shown. 

8. Preliminary global estimates of AGB changes 
combining SMOS passive microwave data and CCI 
Biomass high resolution maps 

Over the past decades, the terrestrial biosphere globally removed about 30% of the anthropogenic 
CO2 emissions due to fossil fuel burning and land use change. This net terrestrial carbon sink is the 
sum of carbon gains from vegetation growth and regrowth after human and environmental 
disturbances, and carbon losses from disturbance and environmental effects like drought. Monitoring 
the terrestrial carbon sink changes over time is essential to understand, accurately quantify and predict 
the effects of present and future climate change. Decadal changes of carbon stocks from inventories 
mainly give changes in forest ecosystems without information on spatial distribution. Only managed 
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forests are considered by countries’ reports to the UNFCCC (e.g., Tubiello et al., 2021). Most countries 
do not have a National Forest Inventory to estimate forest carbon stock changes from repeated plot 
surveys and use a gain-loss approach based on areas disturbed by harvest or fires, and loss factors and 
typical static recovery curves that do not include the indirect impact of environmental factors affecting 
forest growth. Process-based models have also been used to assess the spatial distribution of the land 
sink, but show diverging estimates and poorly represent disturbances and land use change processes, 
lacking for instance a representation of forest degradation. Harris et al. (2021) recently created a map 
of above-ground biomass (AGB) change in the period 2001-2019 using a gain-loss inventory approach 
from different data sources including C removal from fire and harvest and carbon gains from recovery 
curves and remote sensing data for gains in intact forests. They found that tropical, temperate and 
boreal forests were carbon sinks over the years 2001-2019. However, this approach is unable to 
estimate temporal variations, and has large uncertainty. Xu et al. (2021) built a machine learning model 
spatially mapping AGB from ground plots using airborne lidar and satellite data, and used it to predict 
AGB variations spatially and temporally. Their findings suggested that total living biomass (including 
above- and below-ground biomass) increased by 8 PgC during 2000 – 2019, mainly due to the net gain 
of carbon in tropical and subtropical dry forests. However, this space-time substitution approach, 
predicting long-term temporal changes using spatial sensitivities of AGB to environmental factors and 
disturbances, ignored the local constraints on carbon stocks dynamics (e.g., forest demographic 
process, the legacy effects of environmental conditions). 

The L-band vegetation optical depth (L-VOD) product from ESA’s passive microwave Soil Moisture and 
Ocean Salinity (SMOS) satellite has been used to monitor vegetation carbon change (Fan et al., 2019; 
Wigneron et al., 2020; Qin et al., 2021). However, the L-VOD products are strongly perturbed by Radio 
Frequency Interference (RFI), especially in areas of the Northern Hemisphere (Oliva et al., 2016). 
Previous filtering methods for L-VOD have limited capability in RFI-affected regions, and we developed 
here a stricter filtering method that selects the “best” quality data. We also note that the L-VOD 
product is simultaneously sensitive to biomass and water stress (Konings et al., 2019). Separating the 
signals of carbon mass and water content from VOD is, therefore, necessary to better monitor carbon 
stock changes. 

We designed a new filter to remove RFI effects from the raw daily L-VOD data from ascending and 
descending orbits. Then we fitted and reconstructed the changes in the shape of the seasonal cycle 
and long-term trends of L-VOD using curve fitting methods, which was used by NOAA to process the 
atmospheric carbon dioxide measurements. After removing the seasonality changes of L-VOD (mainly 
associated with the water content variations), we calculated the mean annual value of L-VOD during 
the less water stressed periods of May to Aug for all northern hemisphere regions. We then mapped 
annual aboveground biomass (AGB) changes globally, using L-VOD and an empirical spatial calibration 
relationship with the AGB map for the year 2010 from the CCI Biomass project. Specific relationships 
were built for the tropics (25oN to 25oS) and the Northern Hemisphere (above 25oN). We then made a 
first attempt to quantify the spatial–temporal annual dynamics of AGB in relation to forest cover 
changes from 2010 to 2019, and compared results to the ensemble of 15 dynamic global vegetation 
models (DGVMs) from the TRENDY project.  

8.1. Regional aboveground biomass (AGB) changes 

Between 2010 and 2019, AGB stocks increased by + 4.07 PgC (from 255 to 259 PgC) globally (, but with 
larger relative variations at regional scales as shown in Fig. 8-1. Pixels with significant net carbon losses 
were distributed in the northern and eastern Amazon, Congo basin, eastern Australia, and Siberia, 
across all climatic biomes. The total AGB loss in boreal (-2.44 PgC) and dry tropics (-1.9 PgC) was higher 



 

Ref CCI Biomass Climate Assessment Report v3 

 

Issue Page Date 
3.0 69 14.07.2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

than those in the wet tropics (-1.47 PgC), temperate (-1.34 PgC) and arid (-0.80 PgC) regions (Fig. 8-1).  
The spatial distribution of AGB loss is consistent with areas of observed forest loss during 2010-2019 
from Hansen et al. (2013). However, not all forest loss regions showed significant net carbon losses, 
e.g., British Columbia, European Russia, Cambodia, Malaysia and Indonesia (in Southeast Asia). In these 
regions, carbon accumulation from undisturbed forest gains and post-disturbance recovery appear to 
have offset carbon losses from forest area loss. In addition, pixels in western Central Africa and 
southern China show large net carbon gains without significant forest gains. The total carbon gains in 
the boreal and temperate regions are +4.21 PgC and +3.41 PgC, followed by the dry tropics (1.92 PgC), 
arid regions (1.26 PgC), and wet tropical region (0.90 PgC).   

Boreal and temperate regions experienced a net carbon gain of +1.76 PgC and +2.01 PgC from 2010 to 
2019, accounting for the largest and the second largest fraction (47% and 55%) of the global carbon 
sink from AGB changes. Both TRENDY model ensemble and three inversion models consistently show 
a carbon sink in the boreal and temperate regions, although the spread in the magnitude of this sink 
among different models is large. Note that atmospheric inversions include belowground biomass 
changes, soil organic carbon changes and CO2 lateral exports, which are not in our AGB carbon stock 
change estimates. For the arid region and dry tropics, AGB changes were a small net gain or 
approximately neutral (+0.4 PgC and +0.001 PgC), while TRENDY models differ in the direction of AGB 
carbon change, showing on average a small mean carbon source in arid regions and in dry tropics. In 
the wet tropics, we found a net carbon loss of -0.15 PgC from 2010 to 2019, while the simulated AGB 
changes from TRENDY models indicate a carbon sink. One explanation for this discrepancy could be 
the incomplete or missing representation in TRENDY models of disturbances in particular from 
degradation, and anthropogenic disturbances in the wet tropics. 
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Figure 8-1: (a) Spatial distribution of mean annual changes in aboveground biomass (AGB) carbon 
between 2010 to 2019. The inset shows the total net AGB changes (yellow bars) and forest area changes 
(black curve) for five climatic biomes. (b) Spatial distribution of the areal fraction of forest loss (2010 
– 2019). The inset shows the total changes in AGB (orange bars) and forest area (orange curve) for 
regions with AGB loss. (c) Spatial distribution of the areal fraction of forest gains (2010 – 2019). The 
inset shows the total changes in AGB (green bars) and forest area (green curve) for regions with AGB 
gain. 

8.2. AGB changes attributed to disturbances 

To quantify the contributions of anthropogenic disturbances to AGB changes, we used the global 
classification map of the drivers of forest loss (Curtis et al., 2018) and aggregated this forest 
disturbance classification map with a spatial resolution of 10 x 10 km to the areal fractions of each 
disturbance type at 25 x 25 km, and then estimated the total AGB changes due to five disturbance 
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drivers (i.e., deforestation, agriculture, forestry, wildfire and urbanization) (Fig. 8-2). In the Tropics (wet 
and dry), deforestation was the most important contributor to forest and AGB losses, with a total loss 
of -0.33 PgC in the wet tropics and -0.42 PgC in the dry tropics. Important contributions were also from 
agriculture (small- to medium-scale forest/shrub to agriculture) which led to a decrease in AGB of -
0.23 PgC in the wet tropics and of -0.14 PgC in the dry tropics. The negative effects of deforestation 
and agriculture on AGB in the dry tropics do not appear to be offset by the positive effects of forestry 
and vegetation growth. In contrast, TRENDY models forced by the land-use and land-cover change map 
from the LUH2v2h reconstruction show no significant forest fraction decrease in the wet tropics, so 
models do not reproduce the AGB loss in this region. In the Temperate and Boreal regions, forestry 
(defined as large-scale forestry operations in managed forests and tree plantations) has been a 
substantial driver of the carbon sink (increase in total AGB of +1.53 PgC and +1.02 PgC in Temperate 
and Boreal forests respectively). Several recent satellite data provide evidence that forest planting and 
management in southern China and rubber plantations in mountainous Southeast Asia (e.g., 
Cambodia, Indonesia, etc.) led to greening and extensive carbon sequestration during the last decade. 
TRENDY models largely underestimated the effects of plantations on AGB in the above-mentioned 
regions. Lastly, wildfires (defined as forest burning with no visible human conversion or agricultural 
activity) contributed to a net AGB loss of -0.25 PgC in the boreal region.  

 
Figure 8-2: Aboveground biomass annual changes (∆AGB) from L-VOD (thick black line) and Trendy 
DGVMs, and mean net biome productivity (NBP) from inversion models (OCO2, SURF, and GOSAT) 
from 2010 to 2019 for five climatic biomes: wet tropics (a), dry tropics (b), arid (c), temperate (d), and 
boreal (e). The stacked bars of L-VOD show the subcomponents of ∆AGB that are caused by no forest 
loss (grey), deforestation (red), agriculture (yellow), forestry (green), wildfire (brown) and urbanization 
(dark blue). 
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8.3. AGB changes in relation to forest age 

In regions with a forest loss fraction of less than 5%, a possible reason for the discrepancy between 
satellite data and DGVMs is that current DGVMs predicted the carbon sink without considering the 
different capacities to sequester carbon for young, mature, and old-growth forests. To confirm this, 
we utilized a global database of forest age (Besnard et al., 2021 in review) to calculate the total net 
AGB changes in each forest age bin. We found that very young forests (aged 0 – 10 years) and old-
growth forests (aged > 150 years) were approximately neutral, while middle-aged forests (aged 10 – 
50 years) contributed the largest fraction of the carbon sink. The total carbon sink decreases with age 
(from 50 to 150 years). In contrast, TRENDY models showed different (even opposite) curves of total 
AGB changes with forest age. Models predicted that the old-growth forests were the largest carbon 
sink and young forests (aged 10 – 40 years) were a carbon source, and models overestimated the 
carbon sink of old-growth forests growing in the Tropics. This is probably because modelled AGB 
changes from the TRENDY ensemble mainly depend on the response of productivity and mortality to 
environmental drivers (CO2, climate, nitrogen deposition and neglect demographic processes. A 
previous modelling study found that after incorporating forest age into LPJ-GUESS model, the carbon 
sink from regrowing forests (young forests typically younger than 40 years) is greater than that of old-
growth forests (Pugh et al., 2019). Forest age is correlated with height, so we also used canopy height 
data from spaceborne lidar measurements (Simard et al., 2011) to assess the robustness of the AGB 
changes response to forest age, and found a similar response curve of AGB changes to canopy height 
than the response crurve of AGB to forest age.  

8.4. Interannual variability of AGB changes 

Since the interannual variations in the net land–atmosphere carbon exchange come mainly from the 
AGB carbon pool, we compared the interannual differences in global AGB stocks (∆AGB) with the global 
atmospheric CO2 growth rate. The CO2 growth rate lagged behind the curve of global ∆AGB because 
dead trees decay slowly (Palace et al. 2012), and AGB losses (due to mortality events) do not cause an 
instantaneous CO2 emission to the atmosphere, rather a lagged CO2 emission from decaying coarse 
woody debris (CWD), litter and soil pools. This lagged CWD decay should be considered, at least in the 
wet Tropics. We estimated CWD decomposition rates using inventory data and calculated the delayed 
net CO2 losses of CWD with a first-order kinetics model and satellite net primary productivity (NPP) 
from the Moderate Resolution Imaging Spectroradiometer (MODIS). Considering the decay rate of 
CWD fed by AGB losses, we found that the interannual variability in the gross carbon loss flux, which 
was reduced due to part of the carbon remaining in CWD, agreed better with the interannual variability 
of the growth rate, especially the carbon loss flux variations after the big mortality events in 2012 and 
2015 (Fig 8-3). This work is in progress and will be submitted in summer 2021 as a project publication 
(Yang et al.). 
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Figure 8-3: (a) Global atmospheric carbon growth rate (CGR, with reversed sign, black line), global 
AGB fluxes from L-VOD without coarse woody debris (CWD) buffering (red line), AGB fluxes from 
L-VOD with CWD buffering (blue line), over 2012 – 2019. The right-hand panel shows the contribution 
(%) of five climate biomes to the interannual variability in global AGB fluxes from L-VOD without and 
with CWD buffering.Red is the original AGB change from one year to the next from LVOD. Blue is the 
change of AGB carbon flux exchanged with the atmosphere after correcting for the residence time of 
dead carbon in CWD.  The global AGB fluxes were calculated using annual AGB changes compared to 
the previous year. The shadings of each curve show the uncertainty of CGR and the standard deviation 
of L-VOD AGB estimated by different calibrations. (b) Reversed sign global atmospheric carbon growth 
rate (CGR, black line) and global AGB fluxes from Trendy DGVMs (green lines) over 2012 – 2018. 
The right-hand panel shows the contribution (%) of five biomes to the interannual variability in global 
AGB fluxes from individual TRENDY models. 
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