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1. Introduction

This document presents version three of the End-to-end ECV Uncertainty Budget (E3UB) for
Sea_State_cci, deliverable 2.3 of the project.

The calculation of significant wave height (Hs) from altimetry data is a relatively
straightforward inversion of a direct measure of the height distribution of reflecting facets.
Unlike derivation of sea surface height, the estimate is not affected by atmospheric or
ionospheric conditions, and is not dependent upon models of tides or atmospheric pressure
or liquid water content. All retracking algorithms fit a shape to the observed waveform, and
all the LRM ones use the slope of the leading edge to infer the breadth of the distribution of
reflecting facets.

Nevertheless there will be some errors in the inversion, due to the effects of noise, and of
incorrect assumptions in the model. There are also errors associated with the production of
gridded products. This version of the End-to-End ECV Uncertainty Budget (E3UB)
summarises the state of the knowledge after 3 years of the Sea State CCI project.

Illustrations are generated for January 2017 (or else Dec. 2016-Feb 2017) as this is boreal
winter and is expected to have some large wave height values, and it is a period when
Jason-2 and Jason-3 are both operating well, but not on the same tracks (so providing
independent spatial sampling).

This version of E3UB also covers assessment of the two SAR algorithms (Ifremer/Stopa and
DLR) applied to Sentinel-1 data, noting evaluations separately for incidence angles of 23°
and 36°. There is also brief discussion of the derived trends in gridded composite products
and the levels of uncertainty associated with them.
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2. Errors in the Instruments / Algorithms

2.1 Altimeter (LRM)

There are two types of errors associated with the algorithms — those due to inadequacies of
the inversion model, which will be consistent for the same conditions and can lead to an
under- or over-estimation bias, and those that are caused by the sensitivity of the model to
instrumental noise in the altimeter.

Instrument Noise
The principal cause of high-frequency variability is "fading noise" (or multiplicative noise) due
to the signal at each waveform bin being the sum of many independent contributions with
random phase. Each realization of fading noise is usually taken to be independent from all
its neighbours, and should thus cause errors that are independent between successive
high-rate estimates. This component of error can be estimated by applying a low-pass filter
to determine the underlying geophysical variation, and examining deviations from that, or,
more simply, by utilising σHs (the S.D. of the high-frequency estimates contributing to each 1
Hz record). This assumes there are no significant true variations in the geophysical signal
on such small scales. This will generally be true away from the coast and away from fronts,
so by examining statistics on a global basis these effects are minimised. Figure 1a shows
σHs as a function of Hs for Jason-3.

Figure 1 : a) Left panel shows a scatter plot of σHs as a function of Hs for
Jason-3’s MLE-4-based estimates during Jan. 2017. The cyan crosses
only show a small subset of the points, but the blue line shows the mean
relationship derived from all data (averaged in 0.5 m bins). b) Right panel
shows the effective standard error of the 1 Hz mean values, by dividing the
curves for Jason-2 and Jason-3 by √19 and that for AltiKa by √39.

The analysis in Fig. 1a shows the results for the standard MLE-4 algorithm in the Jason-3
GDRs. The mean value of σHs is ~0.5 m at low wave heights and increases with Hs. There
is also a slight increase at values of around 0.5 m because the leading edge is poorly
resolved in such wave conditions (only bracketted by 2 or 3 wavebins) and thus the slope is
hard to estimate accurately. A reduction again in σHs for Hs<0.3m is not trustworthy, as it
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simply reflects that all derived negative values are set to zero, thus reducing the variability.
The magnitude and shape of the curve are properties of the altimeter and the retracker
applied. Some of the retrackers being developed within the Sea State cci project yield lower
variability (Fig. 2). These plots show how the 1 Hz variability (“Noise”) is very different for
different retrackers applied to the same data (Jason-3 and Sentinel-3A in this case), with, in
most cases, the variability increasing with wave height. However, some of the
methodologies encompass a degree of along-track smoothing, and thus this measure of
noise is not always a good estimate of the variability caused by the fading noise. Note that
the analysis shown in Fig. 2b encompasses algorithms applied to both SAR and PLRM
mode data from Sentinel-3A.

Significantly different results are found for AltiKa (the only altimeter to operate at Ka-band
to-date). Its higher operating radar frequency permits useful operation with a higher number
of independent pulses per second. Secondly, it has a narrower emitted pulse (smaller PTR
width) and narrower wavebins within the waveform, which ensure that there is better
sampling of the leading edge at low wave height conditions. Therefore the slight rise in σHs

as Hs approaches zero is less pronounced.

Figure 2 : Noise level of the individual retrackers as a function of significant
wave height (SWH) for a) J3- and b) S3A-retracking algorithms with the sea
state noted at the bottom. The estimates of noise for “very high sea states”
may not be reliable due to limited no. of observations and possible
association with intense rain events. Also, the data at apparently very high
sea state may not be reliable because they could be outliers that are not
caught by the quality flag, which often generates high (although realistic)
SWH values [Taken from Schlembach et al. (2020)].

Algorithm Bias
Error in the assumptions used for the inversion algorithms can lead to biases that will not
average out over many independent waveforms. Most LRM algorithms model the slope of
the leading edge as being due to the combined effect of emitted pulse (PTR) and the
smearing due to reflecting from surface facets at different heights. This is often expressed as
a composite width, σC:
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σC
2 =  σP

2 + (Hs/2c)2 (1)

where σP is the width of the Gaussian modelling the Point Target Response (PTR).
Systematic errors can then be introduced by uncertainty in the appropriate value for σP

(especially if long-term space exposure is believed to have changed the value from that
recorded during on-ground testing) or when the PTR cannot be reliably modelled by a
Gaussian curve. Given that the Hs term will dominate σC for Hs>2m, the concerns about the
actual shape and width of the PTR are only pertinent for low Hs conditions. Figure 3a shows
the inferred instrument correction on Jason-3 to compensate for the real PTR shape.

Figure 3 : a) Left panel shows LUT correction for MLE-4 algorithm applied
to Jason-3. b) Right panel shows mean bias observed using simulation
results for the WHALES algorithm, with the bias varying according to both
wave height and the position of the leading edge.

CLS have developed a numerical retracker which uses measured PTR shape in the
inversion rather than the Gaussian approximation; others have applied a Look-Up Table
(LUT), based on the values shown in Fig. 3 to produce a correction after the inversion. The
correction is significant, but once compensation has been made for the real PTR it is less
clear how large the error is. Simulation work performed within the Sea State CCI suggests
that there may still be large errors after correction because the effect depends upon the
position of the waveform within the window. Although averaging over many successive
waveforms will reduce this effect due to positioning, it may not disappear because of a
systematic bias caused by the on-board tracker placing the reception window differently
when approaching and receding from the Earth (i.e. principally when heading equator-ward
or poleward). However such effects only seem noticeable for Hs significantly below 1m. An
attempt to code the variation in PTR effect with position of leading edge within the tracker
window, did not achieve the goal of reducing errors (see discussion of WHALES_realPTR in
Schlembach et al. (2020)).
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2.2 Altimeter (DD)

The waveform shape associated with SAR altimetry is different from that for LRM, with
changes in wave height affecting both the leading edge and to a lesser extent the trailing
edge of the shape. Thus a greater number of waveform bins show sensitivity to Hs, which
may be expected to improve the resilience of estimates to the effect of fading noise.
However with the current default algorithm on Sentinel-3A, the variability of the 20 SAR
estimates in a second (Fig. 4a) is similar to that for LRM. However, significant advances
have been achieved in the past year, with algorithms developed by CLS/CNES, TUM and
isardSAT (LR-RMC, WHALES-SAR and DeDop-Waver respectively) which have reduced
noise levels compared with SAMOSA (see Fig. 2b).

Figure 4 : a) Left panel shows σHs (S.D. of values in a 1-second interval)
as a function of mean Hs. Data are from Sentinel-3A cycle 033. Cyan
crosses show a subset of the points, the blue line shows the mean
relationship derived from all the data in the cycle. b) A comparison of S3B
data with near-simultaneous S3A data during S3A cycle 033, with S3B first
in LRM mode, then later in SAR mode, whilst S3A is always in SAR mode.
The 'bias' shows the mean of S3B-S3A and the S.D. shows the variability
about this mean.

At present there is a disparity between the Hs retrievals in LRM and SAR mode. When both
Sentinel-3 altimeters are in SAR mode there is minimal bias between them and a S.D. of
0.12 to 0.15 m (Fig. 4b); however with S3B in LRM mode its bias relative to S3A varies
between 0.3 m at low Hs to almost -0.1m at high Hs, with greater variability of the difference.
Part of this difference in behaviour is due to the narrow footprint that can be achieved with
the SAR processing: when there is very long wavelength swell it is possible that the footprint
does not contain the full variation in height of reflecting facets (Fig. 5a). This depends upon
the direction of propagation of the swell relative to the flight direction of the satellite, but
analyses using swell direction inferred by models appear to quantify this effect (Fig. 5b).
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Figure 5 : a) Left panel shows schematic of a simple long wavelength swell
field (colours indicating the height of the water surface), with the narrow
SAR mode footprint almost aligned with direction of swell. b) Difference
between SAR and PLRM estimates of wave height as a function of angle
between modelled swell and altimeter flight direction. [Illustration taken
from presentation by M. Raynal (CLS).] Observations are for wave heights
in the range 2 to 3 m. The relative bias is independent of direction for short
period waves (centre of diagram), whereas for the longest periods (and
wavelengths) the bias is altered most rapidly if the footprint width and the
wave crests are aligned (0˚ and 180˚ in the diagram).

This is an area of intense investigation, and will change according to which version of the
Processing Baseline is used. Figure 6 shows a comparison of maps of the mean wave
height averaged over the whole of 2019 for Sentinel-3A (PLRM), Sentinel-3A (SAR) and
Jason-3 (LRM), with the S3A data being from the recent (Jan. 2020) reprocessing. There is
a clear regional pattern in the difference of Sentinel-3A SAR and PLRM estimates that
appears to be linked to the mean Hs value; however this does not imply that the bias for 1
Hz estimates is simply a linear function of Hs, as the annual mean values may be affected
by the frequency with which one or other algorithm returns an anomalous (e.g.near zero)
value but the data pass flagging checks. This can be noted in the histograms (Fig. 6d) and
emphasises the importance of assessing data flagging along with accuracy of estimates.
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Figure 6 : Comparison of altimeter SWH data for 2019. a) Average of all
2019 for Sentinel-3 PLRM data b) Mean bias of Sentinel-3 SAR mode data
to those from PLRM c) Difference of mean fields from S3:PLRM and
Jason-3 (LRM) d) Probability distribution functions of SWH data for Jan.
2019. Numerical values are the median and (in brackets) the 10th and 90th
percentiles. Data are limited to 50˚ S to 60˚ N to avoid effects of undetected
sea-ice. Comparison of grid box means for 2019 for e) S3:SAR relative to
PLRM and f) PLRM relative to Jason-3. Full red lines show mean
relationship in 0.2 m wide bins with the dashed lines showing ±2 std. dev.
For these last 2 plots some data exist outside the axes shown, but these
are relatively few.  [Taken from Quartly et al. (2020)].

2.3 Synthetic Aperture Radar

The SAR methods were developed and validated for Sentinel-1 Wave-Mode WV data. WV
vignettes (imagettes) 20 km by 20 km were acquired every 100 km along the orbit with two
different incidence angles approximately 23° (wv1, imagettes with odd numbers 1,3,5..)
and 36° (imagettes with even numbers 2,4,6….. ) respectively. Vignettes on the same
incidence angle are separated by 200 km.
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The estimation of sea state integrated parameters (significant wave height, periods Tm1,
Tm2, etc.) from SAR data is based on direct processing of intermediate parameters (e.g.
variance, spectral parameters, etc.) from NRCS measured on image subscenes. The
estimating is rarely affected by atmospheric conditions. In most of the cases, their influence
is taken into account by algorithms. In the DLRl method, around 1% of data are discarded
(flagged) by atmospheric and other artefacts. For example, under strong winds, the sea
surface can be completely destroyed by wave breaking and also man-made artefacts like
ships, ship wakes or wind farms can spoil the sea state signal.

When the algorithms for SAR sea state retrieval are tuned by utilizing models and buoys as
ground truth, then the uncertainties of both ground truths are propagated into the resulting
algorithm’s accuracy. Worldwide, model data (e.g. WWIII, CMEMS) and buoys agree with an
RMSE of ~0.25 m for general conditions which, however, can reach an RMSE of ~0.5 m
under storm conditions, mostly due to a relatively small temporary shift of the storm peak
passing through a buoy position.

The comparisons show, both algorithms DLR and Ifremer (Stopa) have near identical SWH
accuracy. DLR has a little better RMSE, Ifremer has slightly less invalid data (No-Sea-State
percentage). So, by CMEMS validation, the total RMSE averaged for wv1 and wv2 is 0.263
m (DLR) and 0.273 m (Ifremer), the no-sea-state percentage is 1.08 % (DLR) and 0.24 %
(Ifremer). For the NDBC validation similar numbers are obtained: RMSE of 0.414 m (DLR)
and 0.445 m (Ifremer) and no-sea-state percentage of 1.45 % (DLR and 0.83 % (Ifremer).

Figure 7 : RMSE distribution for four sea state domains and mean RMSE
noise estimated. The mean values in the second line were built with
weighting of 0.5 for both CMEMS and NDBC.
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Figure 7 shows the RMSE distribution for four considered sea state domains and mean
RMSE noise. In the first line all ground truth comparisons are shown. DLR RMSE values are
marked with blue-palette colors, the Ifremer RMSE values are marked with red-palette
colors. In the lower graph, for each sea state domain, the mean values are built with
weighting of 0.5 for both CMEMS and NDBC RMSE’s. The grey colored bars present the
mean value for both DLR and Ifremer algorithms. Note, for sea state>6m the NDBC has only
30 collocations for buoys in 50 km radius from S1 WV imagette borders, while CMEMS has
around 5000 exact geo-located collocations.

The noise analysis shows similar trends for both algorithms:

● the accuracy averaged for forecast model and buoy measurements is of the order of
~0.3 m for the sea state category of moderate sea state, where ~60% of all data
points are located

● this averaged accuracy declines with increasing SWH values to ~0.42 m for rough
sea state with SWH about 4-5m and to ~0.8 m for very high sea state over 6m SWH.
This is connected to both accuracy of the SAR methods and to an increased error in
the ground truth, which also grows proportional to the larger sea state values.
However, if one connects the local RMSE with the mean value for this sea state
domain, the same scatter index SI can be obtained.

● for low sea state (SWH<1.5 m) some difficulties can be seen in comparison with
moderate sea state, the lower accuracy does not match to the tendency of higher
error with higher sea state described before. This effect is connected to the specifics
of SAR imaging of sea surface, where the short and small waves cannot be imaged
individually, but are only visible as noise. Although it is possible to derive their
characteristics from the noise, the accuracy is slightly lower in contrast to visible
wave patterns.

Note, the validation was carried out for -60°<LAT<60° in order to avoid ice coverage.
However, as analyses showed, sea ice can be encountered until -60°<LAT<55° so that both
SWH, from the model and estimated from S1 WV, may be affected. For the DLR algorithm a
number of outliers and no-sea-state flags are especially high in this area. In case the
validation area is reduced to 55°<LAT<60°, the resulting total RMSE improves by ~1.5 cm.

Fig. 8 shows the distribution of squared difference between SWH estimated form S1 and
ground truth (CMEMS). On the graph all 270.000 round robin data points are shown, the
horizontal axis means latitude of acquired and compared data. As can be seen, in both
algorithms, a jump of this differences appears at LAT<-58°. This inconsistency is due to sea
ice.
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Figure 8 : Distribution of squared difference between SWH estimated form
S1 and ground truth (CMEMS). For both algorithms, the ice coverage
impact is quite visible for LAT<-58°.The complete comparison was done for
-60°<LAT<60° in order to avoid ice coverage. As can be seen this masking
is not enough to completely eliminate the ice uncertainty produced by both:
CMEMS and S1.

In order to prove that the method does not include a smoothing, along-track comparisons
and comparisons of PDFs were carried out. A typical example of an along-orbit comparison
for a long overflight of around 12.000 km is presented in Fig. 9.

Figure 9 : An example of an along-orbit comparison for one long overflight
of around 12.000 km (product ID S1B_WV_SLC__1SSV_20190118T183208_

20190118T190015_014552_01B1BF_F3EF) plotted separately for wv1 (odd
number imagettes on the first graph, 200 km between each points) and wv2
(even number imagettes on the second graph) vignettes. Red points mean
DLR SWH and blue are CMEMS SWH temporally interpolated 3h model
outputs.
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Figure 10 : P.d.f. of SWH distribution for CMEMS and estimated from S1
WV imagettes.  a) Ifremer (Stopa) algorithm, b) DLR.

Figure 10 shows the p.d.f. of the SWH distribution in ground truth (CMEMS, blue curves in
both graphs) and of the SWH estimated from S1 WV vignettes (red curves) built for both
algorithms. The Ifremer algorithm comparison is in the left-hand panel, the DLR results are
on the right, the differences between PDF-S1 and PDF-CMEMS for both algorithms are
green. As the DLR algorithm was tuned with CMEMS data, the comparison for that
algorithms leads to slightly lower differences. The Ifremer algorithm was tuned using
altimeter data; this probably results in a slight smoothing effect for low wave heights.

The bias comparisons are shown in Fig. 11. In the top graph, the original values for both
algorithms are presented for each sea state bin. The values scatter strongly with “-/+” signs,
so the centre graph shows the ABS(BIAS). The figure’s bottom graph presents averaged
values for CMEMS (green) and NDBC (magenta). The strongest BIAS can be seen for
SWH>6m for NDBC. However, this value is based on 30 NDBC collocations, while the
CMEMS has around 5000 collocations for SWH>6m.
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Figure 11 : Bias of both DLR and Ifremer (Stopa) algorithms (top graph),
ABS(BIAS) (centre graph) and mean for CMEMS and NDBC for each sea
state domain (bottom graph). Grey bars show averaged ABS(BIAS) for
CMEMS and NDBC with weighting of 0.5.
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3. Error Propagation

There are two main types of error contributing to the overall error for altimeter data: that due
to fading noise, which will be independent from one waveform to another, and that due to
systematic errors (incorrect assumptions in algorithm or effect due to swell or wave
direction), which are likely to be consistent over large scales (up to 100 km). These can be
assessed by comparison with a large number of in situ observations, but these need to span
a wide variety of conditions (wave height, swell period, wind conditions), and in turn be fully
and reliably calibrated. It will be particularly challenging to assess any systematic errors at
very high seas states.  The overall error is given by:

(Overall error)2 =  (Fading  error)2 / No. of waveforms + (Systematic error)2 (2)

This is illustrated in Fig. 12, for two different values of fading error (representing what is
currently achieved, and what could be with improved algorithms) and two levels of
systematic noise. For comparisons with buoys and models, it is more important to reduce
the systematic error; reducing sensitivity to fading error is mainly beneficial for fine resolution
studies e.g. near the coast or in response to well-defined current features.

Figure 12 : Illustration to show that error in altimeter estimates due to fading
noise dominates for scales of 1 Hz (20 obs.) and finer, but systematic errors
are more important at larger scales. Dashed line at 50 pts represents the
averaging scale used in buoy comparisons, and that at 150 pts equates to
50 km, a typical scale of high-resolution wave models.

In the production of L4 gridded products (see Section 4) there may be some further
reduction in uncertainty due to averaging of observations from different days; however
regions with persistent existence of swell or dominant wave directions, will suffer from
geographically-correlated errors.
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4. Uncertainty in L4 Gridded Products

4.1 Uncertainty in the Mean

Ultimately the aim of an L4 gridded product is to characterise the distribution of values to be
found in a given box over a certain period of time: these are often reduced into measures of
mean and maximum. However, the set of observations is far from complete, neither
covering all locations in a box or all times, and thus the mean of the altimeter observations
will not be the same as the mean of the underlying conditions. This examination is
performed for 2.5˚ x 2.5˚ boxes (as this is close to the longitudinal spacing of Jason tracks)
for a monthly period (see Fig. 13).

Figure 13 : a) Left panel shows altimeter tracks across a randomly-selected
open ocean box for January 2017. Jason-3 (in the reference orbit) is in
blue; Jason-2 (in the interleaved orbit) is in green; AltiKa (in its drifting orbit)
is in red. [Note AltiKa's track spacing is much finer than when in 35-day
repeat, but now it takes twice as long to give roughly uniform coverage.] b)
Right panel shows the timing of those overpasses.

For the given size box there are typically two Jason-2 passes (one ascending, one
descending) and two Jason-3 passes, both of which are run thrice in a month, with about six
AltiKa tracks through that box each month. However the temporal sampling is far from
uniform: there is a 4-day period at the beginning (Days 6.5-10.5) and a 5-day period at the
end with no observations, even with 3 altimeters. Using larger grid boxes will improve
temporal sampling, but not allow the resolving of spatial changes in the wave climatology.
The temporal sampling will be even worse in grid boxes containing significant land, as there
will be fewer valid tracks. To ascertain the error associated with the gridding process, a
mean Hs field for January 2017 was calculated separately for both Jason-2 and Jason-3
(see Fig. 14).
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Figure 14 : a) Left panel shows difference in mean wave fields for January
2017 using either just Jason-2 data or just Jason-3. b) Right panel
shows the r.m.s. difference of the Jason-2 and Jason-3 mean fields as a
function of mean conditions. (Data used for this are from Dec. 2016 - Feb.
2017).

The difference in the gridded fields (Fig. 14a) matches the pattern of the mean Hs conditions
(not shown), with the r.m.s. difference rising monotonically with wave height. This gridding
error would be reduced by compiling data over larger grid boxes. Considering Jason-2 and
Jason-3 to have near-identical performance, the uncertainty in their individual climatologies
would be characterised by the curve in Fig. 14b divided by √2. Provided all altimeter
estimates of Hs are harmonised (which is one of the aims of the Sea State CCI) then the
gridding error associated with limited temporal sampling can be reduced by using multiple
altimetric datasets.

4.2 Estimation of Extremes

The characterization of the most extreme conditions (largest wave heights) in a region is of
great societal relevance. The spasmodic sampling shown in Fig. 13b implies that major
storms may pass unrecorded if they occur at inconvenient times. There is little that can be
done concerning individual storms that were not measured; however by assuming that the
nature of the long-term statistics is known (e.g. conformance to a Weibull distribution) then
inferences can be made on the likely extremes. This will still not cover extraordinary events.
Furthermore, in developing a long-term climatology of observed extremes, care must be
taken to account for the greater likelihood of observing an extreme event when there are
more altimeters in operation. Such an issue could be avoided by only using “2-satellite”
operation (i.e. one in TOPEX/Jason orbit and one in ERS/Envisat orbit), but that involves a
decision to discard more than half the altimetric data collected. The sparse sampling can
also lead to a strong bias in parameters like 10-year return period (Stopa, 2016). One
possibility to get away from this problem is to use a numerical model after properly
quantile-quantile correcting the model biases using satellite data

Finally, a remark must be made about the effect of rain. Although the methodology for
deriving wave height from altimeter returns is robust to most environmental effects,
inhomogeneous patterns of atmospheric attenuation may seriously disturb the waveform
shape and lead to wildly varying estimates of wave height. Figure 15 shows that the
locations of sharp changes in derived Hs align with known patterns of rain. This is perhaps a
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simple but salutary reminder of the need for adequate quality control in the data passed
towards the gridding process.

Figure 15 : Locations where σHs >1.5m (see Fig. 3a for mean values).
[Note this indicates occasional high values for Jason-3 during Dec.
2016-Feb. 2017, rather than the typical values there].

Although the pattern of the main rain bands is clearly apparent, these extreme values only
represent 0.15% of the dataset. Careful rain-flagging is required as major storms with
exceptional wave conditions occur preferentially in these regions of spurious Hs estimates
due to the effect of rain.
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5. Total Error
This document has detailed that there are a number of individual sources of error. An
indicator of the total error can be gained by comparing altimetric data against some other
trusted source. First we show a comparison with wave buoys, noting however that the
square of the total mismatch error is the sum of the squares of the errors in the altimeter,
and in the buoys and that due to their different spatiotemporal sampling of waves. In the
subsequent sub-section, we explore use of the Triple Collocation Technique to partition the
error between different sources.

5.1 Comparison with Buoys

Use of buoys for validation leads to an overestimate of the errors associated with altimeter
records of wave height. This is because i) the buoy gives a point measure compared with an
altimeter's areal average over the instrument footprint, ii) the buoy provides a temporal
average (to compensate for its “point” nature) that may differ by half an hour from the time of
the altimeter overpass, and iii) there are errors in the buoy measurement. The latter include
the fact that buoys are not able to sample the whole wave spectrum, that calibrated buoys
may have an error of order 2%, and that different buoy operators may have different
procedures.. Finally, the buoy location may be sufficiently off track that it samples a different
wave-field, especially as many buoys are in quite coastal locations. Usually buoy-altimeter
comparisons are done far from the coast to avoid the effect of land on the altimeter signal
and to minimise the likelihood of significant small-scale variations in the wave field. Thus the
illustration in Fig. 16 is from the data gathered for the Round Robin, and shows the
comparison for the 40 buoys showing the best agreement with the Jason-3 altimeter.

Figure 16 : a) Left panel shows scatterplot of matched up buoy and Jason-3
measurements. The buoy data have been smoothed over 3 hours and then
linearly interpolated to the time of the overpass, whilst the altimeter values
are the mean of the 51 20 Hz records nearest to the buoy. b) Right panel
shows bias (solid line) and S.D. (dashed line) of MLE-4 as a function of
wave height.
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Despite having selected the buoys giving the best agreement, this is still an overestimate of
the error in the altimeter value due to the reasons stated above. Figure 17 shows a
comparison of S.D. as a function of SWH for the many algorithms evaluated in the Sea State
CCI Round Robin exercise for altimetry.

Figure 17 : Standard deviation of differences of various altimeter retrackers
against in-situ buoy data as a function of SWH for a) Jason-3, b)
Sentinel-3A respectively. [Taken from Schlembach et al. (2020)].

The RMSE values obtained from the comparison with buoys does depend very much upon
the data flagging applied and the choice of buoys to be used.. If the 1 Hz average values
are calculated from very few observations it is likely that these are all affected by land
contamination of the waveforms. Requiring that there are a minimum of 5 or even 10 or 20
points for a mean to be defined removes those match ups beset with outliers and
consequently improves both r2 and RMSE (see Fig. 18a)

Further sub-selection of match ups according to whether buoy and altimeter track
experience the same exposure to wave conditions removes pairing where one set of
observations is in a sheltered location, and again leads to improved metrics (See Fig. 19a).
Note, it is not simply a case that one type of comparison is wrong: open ocean comparisons
with close match ups show the accuracy of the altimeter instrument (once buoy error is
allowed for), whilst coastal results show the problems with contaminated waveforms, and
the greater variability for poor match-ups highlights that altimeter values at the coast cannot
be taken as representative of the conditions in a nearby coastal location with different
exposure.
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Figure 18 : Generally improved performance as minimum no. of valid
measurements is increased from 1 (at top left) with low r2 and high RMSR)
to 5 to 10 to 20. Results are for various retrackers applied to Jason-3.
[Taken from Quartly & Kurekin (2020)].

Figure 19 : Effect of match up selection on r2 metric for (a) Coastal, (b)
Open ocean. Results are for various retrackers applied to Jason-3; in all
cases the r2 value is higher (better match) when the comparison is
restricted to the best aligned buoy-altimeter pairings.. [Taken from Quartly &
Kurekin (2020)].

The SAR comparisons with buoys were conducted for 57 buoys found to be collocated with
S1 WaveMode imagettes with a distance less than 50 km to imagette borders (see Fig. 20).
This distance was chosen as optimal separation due to two conditions: the largest number of
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collocations with the acceptable local sea state variations. In fact, worldwide only 2 NDBC
buoys are collocated closer than 2 km to S1 WV imagettes and only 15 buoys under 20 km.

The comparisons with buoys conducted in the scope of the round robin results in an RMSE
of ~0.42 m for total SWH (see Fig. 21).

Figure 20 : 57 buoys collocated with S1 WV imagettes with distance less
than 50 km to the imagette borders. There are 48 NDBC (blue), 8 ECCC
(yellow) and 1 EMODNET (red) buoys.

Figure 21 : Scatter plot for SWH comparisons with NDBC measurements
conducted for 2019. Averaged RMSE~0.42 m for total SWH.
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5.2 Triple Collocation Technique: Comparison with Buoys and Models

The Triple Collocation Technique (TCT) is a statistical approach relying on the matchup of
three totally independent estimates of a true field, and requiring that overall each of the
estimates is unbiased with respect to each other, as it does not provide a means of
estimating the bias of individual sources. It has been used to study sea surface height
(Tokmakian and Challenor, 1999), sea surface temperature (O’Carroll et al., 2008) and
metocean parameters (Caires and Sterl, 2003) amongst others. A key parameter choice is
the amount of separation between buoy and altimeter measurements that is deemed
acceptable. Abdalla and de Chiara (2017) showed, for wind speed, that results were robust
if there were a “few thousand” match-ups. Abdalla et al. (2011) showed that this number
could be achieved on an annual basis using a 50 km criterion with the available in situ
network, but recommended relaxing the match-up threshold to 200 km, thus quadrupling the
number of comparisons used. Their analysis (reproduced in Fig. 22) showed that for a
separation of less than 50 km, averaging across all three altimeters investigated, the error in
the satellite measurement would be ~0.16 m, rising to ~0.19 m if 200 km distance between
altimeter and buoy is tolerated. Extrapolating the altimeter error line to zero distance gives
an altimeter error of about 0.15 m (about 0.12 m for Jason-2 and Envisat and about 0.19 m
for Jason-1). [Note the figure suggests that values about 0.02 m less than this would be
pertinent if just Jason-2 and Envisat were considered; this may also be true for more recent
altimeters such as Jason-3 and Sentinel-3A.]

Figure 22 : The partition of errors from a Triple Collocation analysis,
indicating that slightly greater errors are attributable to the altimeter as its
separation from the buoys increases. [Taken from Abdalla et al. (2011)].

The direct buoy-altimeter comparison and the triple collocation technique offer slightly
different perspectives on the error in the altimeter estimates. The former gives a mismatch
error including buoy error, whereas the latter more clearly differentiates the errors due to
various sources. However, TCT requires many more match-ups to give robust results and
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thus is less amenable to characterising the error in the coastal zone or as a function of wave
height.

5.3 Insight from Climate Assessment Report

Data quality within the coastal zone
Given the considerable importance of sea states for coastal management and coastal risk
mitigation, there is a large demand for high quality observations in the coastal zone. Since
satellite observations (altimetry and SAR) can be contaminated by coastal features, it is
relevant to investigate how close to the coast high quality satellite observations can be
retrieved, and how measurement errors vary with the distance to the coast.

In order to examine these issues, calibrated data from Envisat and the Jason 1, 2 and 3
missions from the CCI L2P version 1.1 data product (Piollé et al. 2020) were evaluated. The
results, presented in more details in the Climate Assessment Report (CAR), show that
inshore waters (between 3 and 10 km) have higher SWH rms (noise) compared with the
open ocean (between 43 and 50 km), the inshore waters and open ocean SWH rms noise
tends to increase as the SWH increases, and the SWH shows a dramatic decrease in the
number of observations less than 10 km from the coast (Fig. 23).

The results suggest that observations at a distance greater than 15 km from the coast do not
suffer substantially from loss of data quality, as indicated by occurrence of rejection flags.
This further implies that analysis of extreme SWH within 15 km is likely to be problematic,
noting that the space-time sampling of extreme SWH from satellites is already fairly low.
Without high quality in-situ observations, such as those provided by data buoys, to robustly
validate satellite observations, or more in-depth understanding of the satellite rejection flags
closer to the coast, it may not be advisable to use the CCI L2P product V1.1 closer than
15 km to the coast.

Long-term statistics
One of the key objectives of the Sea State CCI project is to robustly assemble multi-mission
altimeter data in order to investigate sea state decadal variability (including trends) at global
scale. Previous analysis of existing multi-mission altimeter products revealed significant
trends of extreme significant wave height (trends of Hs90 up to 1cm/year) over the period
1985-2018 (Young and Ribal, 2019). However, several factors (calibration method, reference
dataset, sampling) may impact the accuracy of the computed trends. As a result, different
sea state products may provide different trends.
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Figure 23 Results from the CCI Sea State L2P product v1.1.using Jason 1,
2 and 3 for the United Kingdom and North Sea region. The SWH as a
function of distance to the coast (top left panel), the location of the Jason
tracks (top right panel). Inshore waters (3-10 km, middle left panel) and
offshore water (43-50 km, middle right panel) showing SWH rms vs SWH.
Lower left panel illustrates the percentage of good data as a function of
SWH with respect to a bin size of 0.1m for both the inshore water (green)
and offshore water (black). The lower right panel represents the percentage
of good observations as a function of distance to the coast with respect to a
bin size of 1 km.

As part of the Sea State CCI Product Assessment, the version 1 of the Sea State CCI
dataset was compared with three other high-quality global datasets (Ribal and Young, 2019,
hereafter, RY2019; ERA5; and CY46R1) using a consistent methodology (see Section 2.3 of
CAR and Timmermans et al., 2020). These comparisons revealed similar spatial distributions
but significant differences in the amplitude of the trends between the considered model and
altimeter data. In particular the differences in the two altimeter-based products (RY2019 and
CCI2019) were partly attributed to the different reference in-situ dataset and methodology
used to calibrate the altimeter records.

Therefore, uncertainty on long-term trends related to the calibration method (e.g. due to
changing reference in situ observations) should be further investigated and methods should
be developed in order take it into account the total error budget of long-term statistics.
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Figure 24 . Global distribution of JFM mean Hs trend estimates on a 2°× 2°
grid over 1992–2017 for (a) RY2019, (b) CCI2019, (c) ERA5, and (d)
CY46R1. Dots indicate grid cells where the trend coefficient is significant at
the 95% level.  [From Timmermans et al., 2020].
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6. Summary
Radar measurements of wave conditions are little affected by other environmental
parameters, except that heavy rain may affect the waveform shape and thus lead to
occasional highly-localised errors. Also estimates of Hs from SAR altimetry may show some
sensitivity to relative direction of travel if the swell is of a very long wavelength (more than
twice the along-track width of the delay-Doppler footprint).

There are errors associated with random instrumental noise, defects in algorithms (e.g. due
to invalidity of some simplifying assumptions), and the limitations of the altimeter’s
spatio-temporal sampling of the true wave field. The table below brings together the values
illustrated in the diagrams.

Effect Magnitude Notes

Fading noise on 20 Hz
waveform

0.5-0.8 m

0.25-0.35 m

For Jason-3 MLE-4; can be improved
with different retrackers
For ‘adaptive’ (LRM) and ‘LR-RMC’
(DDA) retracking algorithms evaluated
in Round Robin.  Note this noise term
increases with Hs, with the increase
being faster for DDA retrackers than
for LRM ones (see Figs. 1,2)

Fading noise on 1 Hz mean 0.12-0.20 m

0,04-0.08 m

For Jason-3 MLE-4.  Up to 50% less
for AltiKa.  This can be improved with
different algorithms (see Fig. 6)
For ‘adaptive’ (LRM) and ‘LR-RMC’
(DDA) algorithms evaluated in Round
Robin

Non-Gaussian PTR ±0.2 m But a significant part of this can be
corrected for (see Fig. 3)

SAR altimeter imaging of
swell

0.1 m The bias of SAR algorithms w.r.t. LRM
ones may depend upon period and
direction (see Fig. 5) or simply with Hs
(Fig. 6e)

SWH error from SAR 0.25 m  ±0.01 m S1 WV averaged for both algorithms
(DLR and IFREMER), mean of wv1
and wv2, validated with CMEMS.

Wave direction error from
SAR

no directional parameters provided by
SAR algorithm’s output.

Error in gridded product (2.5˚
x 2.5˚ x 1 month)

0.15-0.80 m For one altimeter, giving 6
independent transects during that
time.  Will reduce with more altimeter
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or larger boxes or periods.  Error
increases with mean Hs conditions
(see Fig. 9b)

R.m.s. error for ~17 km
section, compared with best
buoys

0.20 m

0.35 m

This also includes the errors in the
buoys and the difference in space and
time sampling.  Note mismatch error
increases with Hs  (see Fig. 11).
Mismatch error in Round Robin,
where almost all buoys are used (see
Fig. 12) but significantly lower errors
are achieved with selection of best
pairings of buoys and tracks (Fig. 14).

Trends in L4 data) ~ 0.01 m/yr Fig. 24  shows derived regional trends
from various differently derived
datasets to differ locally by up to 0.02
m/yr.  Incorporation or not of
atmospheric modes leads to
variations in derived long-term trend
of  ~0.005 m/yr (see Fig. 2.13 of
CAR).

6.1 Recommended Error Specification in CCI v2 Products

A variety of products will be produced by the Sea State CCI, and users may wish to know
the likely errors in each. This is not trivial, because (as highlighted in this document) the
values vary with sea state, coastal proximity, technology, as well as retracker applied and
any post-processing. Given the focus on the v2 product, the characteristics listed here are
for WHALES processing of LRM data and LR-RMC processing of SAR mode
(delay-Doppler) data, with no subsequent filtering or smoothing applied. For simplicity, we
characterise all as simple linear functions of Hs, with caveats noted.

High-rate (20 Hz) : This will be dominated by white noise, caused by fading. nse = 0.25m +
0.4Hs (LRM, Jason-3) and 0.25m + 0.1 Hs (SAR, S3A). In both cases there are slightly
higher values at Hs<1m. This term can vary with instrument, but Jason-1, Jason-2, AltiKa
and Envisat are likely to have similar values to Jason-3.

1 Hz data : Fading noise component still prominent (estimated magnitude is that o 20 Hz
divided by √19 -- or √39, for AltiKa), but users may be looking to average the data
themselves to larger scales, in which case the value they need is the altimeter error
associated with buoy comparisons.  This is estimated as 0.12m + 0.035 Hs (Fig. 16b).

There is at present a small but clear difference between values from LRM and SAR mode
instruments, which will require further R&D to resolve. The estimated “technological error” =
0.06m + 0.025 Hs (Fig. 6f), which could be assigned to the SAR altimeters for now, pending
further investigation.
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Lastly there is a girdding error in producing a L4 climatology, which is purely associated
with the spatio-temporal sampling. The analysis in section 4 was for 2.5˚ x 2.5˚ monthly
boxes, which meant that a single altimeter would sample that domain about 6 times. On that
basis, the representative error in a L4 product (based on Fig. 14b) is [ 0.15m + 0.12 Hs ] *
√(3/N), where N is the no. of independent transects. The actual proposed grid size for L4
products is 1x1 degree, so individual altimeters that are flying will not necessarily cover
every box. Thus, there may be marked variations in the representativeness error for
neighbouring cells, due to their very different sampling.

An assumption behind the above is that the data flagging is removing all the points affected
by slicks, rain or land effects. Data in such situations may be of interest to users, but the
associated errors will be larger and hard to quantify accurately. Such values may emanate
from the WP on Validation.

For SAR (Sentinel-1 Wave Mode) the total noise of SWH estimation is 0.25 m. This is a
mean value for both DLR and IFREMER algorithms, averaged over wv1 and wv2 validated
with CMEMS. The value corresponds to the noise in ground truth data CMEMS (comparison
CMEMS/WW3/NDBC results in RMSE around 0.25 m for buoy collocations). In detail, for
wv1 the noise is 0.24 m and for wv2 noise is 0.26 m ± 0.01 m dependent on algorithm and
data. The SWH noise distribution can be approximated by 0.20 m + 0.04 * SWH∙ (see Fig.
25).

Figure 25 : SAR noise distribution with ground truth using CMEMS. Linear
approximation NOISE=0.20+0.04 SWH.
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