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1. SCOPE 
This is a report in preparation for a comprehensive Algorithm Theoretical Basis Document 

(ATBD) that will be completed to describe the Sea Surface Temperature Climate Change 
Initiative Version 3 Climate Data Record (SST CCI v3 CDR). The full ATBD will be 

document ATBD D2.1 v3.  

The form of content of this interim ATBD report is notes arising from the algorithm 

development work to date within Phase 1 of SST CCI+. 

The scope of work addressed in this interim ATBD report covers progress with respect to 

preparing passive microwave SST retrievals for potential inclusion in the CDR (in CDR v3 

or v4, decision yet to be made). 

A further interim ATBD report (D2.1 v2) will be prepared describing algorithm 

developments for AVHRR SST retrieval in the infrared, due at month 18 of the project. 

The specific scope of this document is in summary: 

• To describe the use of the ECMWF Re-analysis 5 (ERA-5) numerical weather 
prediction (NWP) fields in microwave SST  

• To present developments of the theory of optimal estimation (OE) for microwave 
SSTs, namely how reference sensors can be used to estimate bias corrections and 
error covariance matrices to "tune" OE  

• To present use of microwave SSTs from Phase 2 to help estimate desert-dust-
related SST biases in the v2 CDR analysis in preparation for reducing biases in the 
v3 CDR  
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2. STATISTICAL RETRIEVAL USING ERA-5 
 

2.1 Introduction  

This chapter describes the ATBD for the DMI regression algorithm used for retrieval of SST 

and wind speeds from JAXA’s Advanced Microwave Scanning Radiometer - Earth 

Observing System (AMSR-E) and its follow-on instrument AMSR2 (Advanced Microwave 

Scanning Radiometer 2). The algorithm was used within the phase 2 of the European 

Space Agency Climate Change Initiative Sea Surface Temperature (ESA-CCI SST) project 
to generate a global climate data record (CDR) of level 2 SSTs with associated 

uncertainties (see Alerskans et al., 2020 for extensive description and validation of the 

algorithm). A consistent algorithm has been used for both the AMSR-E and AMSR2 

observations. This version of the ATBD includes the updates that have been made for ESA-

CCI+ SST phase 1, related to the use of information from ERA-5 instead of ERA-I.  

2.2 Input data 

The retrieval algorithm is designed to be able to use two sources of input data; a Multi-

sensor Matchup Dataset (MMD), which is used for tuning, development and validation of 

the retrieval algorithm, and orbital AMSR-E and AMSR2 data, which is used for producing 

the microwave radiometer (MWR) SST climate data record. 

2.2.1 ESA-CCI Multi-sensor Matchup Dataset 

For tuning and development of the retrieval algorithm, as well as for assessment and 

validation of the performance of the algorithm, Multi-sensor Matchup Datasets (MMDs), 

versions MMD6c and MMD6b were used as input. The MMDs were generated using the 
Multi-sensor Matchup System (MMS) software which was developed within the ESA-CCI 

SST project and the European Union’s Horizon 2020 research and innovation programme 

under grant agreement No 638822 (FIDUCEO project) (Block et al., 2018). The MMD6c 

consists of AMSR-E orbital data matched to in situ SST measurements and MMD6b is the 

corresponding matchup database for AMSR2. The in situ dataset contains quality 

controlled measurements from Global Tropical Moored Buoy Array (GTMBA) data from 

NOAA PMEL (McPhaden et al., 2010), the International Comprehensive Ocean-

Atmosphere Dataset (ICOADS) version 2.5.1 (Woodruff et al., 2011) and the Met Office 
Hadley Centre (MOHC) Ensembles dataset version 4.2.0 (EN4) (Good et al., 2013). In 

addition, the MMD also includes NWP data from ERA-5 (Copernicus Climate Change 

Service (C3S), 2017), which have been interpolated in both space and time to the matchup 

location. Furthermore, the Cross-Calibrated Multi-Platform (CCMP) surface vector winds 
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(Atlas et al., 2011) were collocated with the MMDs and were used for tuning and 

development, as well as validation, of the wind speed (WS) retrieval algorithm. 

To obtain independent results, the MMDs are divided into seven subsets each, to be used 

for either tuning and development or validation of the algorithm: 

§ WS1_TRAIN: training subset for the 1st-stage WS retrieval algorithm; 

§ WS1_TEST: validation subset for the 1st-stage WS retrieval algorithm; 

§ WS2_TRAIN: training subset for the 2nd-stage WS retrieval algorithm; 

§ WS2_TEST/SST_TRAIN: validation subset for the 2nd-stage WS retrieval 
algorithm, also used as training subset for the SST retrieval algorithm; 

§ SST_TEST: validation subset for the SST retrieval algorithm; 

§ UNCERT_TRAIN: training subset for the SST uncertainty retrieval algorithm; 
and 

§ UNCERT_TEST: validation subset for the SST uncertainty retrieval algorithm. 

2.2.2 AMSR-E orbital data 

For producing a climate data record of MWR SST, the spatially resampled L2A swath data 

product AMSR-E V12 (Ashcroft and Wentz, 2013), produced by Remote Sensing Systems 

(RSS) and distributed by NASA’s National Snow and Ice Data Center (NSIDC: 
https://nsidc.org/data/ae_l2a), is used as input. Here we used the brightness temperatures re-

sampled to the 6.9 GHz resolutions. Hence the observations have a resolution footprint of 

75 x 43 km, however, the data is distributed as a dataset with a spatial grid resolution of 10 

km at all latitudes. Auxiliary data include NWP data from ERA-5. The Generalized Bayesian 

Cloud Screening (GBCS) software package (Merchant et al., 2008) is used to interpolate 

the NWP data to the satellite raster. 

2.2.3 AMSR2 orbital data 

The spatially resampled AMSR2 L1R version 2 swath data product: Dataset of Brightness 

Temperature Modified Using the Antenna Pattern Matching Technique (Maeda et al., 2016) 

is used for producing the MWR SST CDR. This product contains similar spatially resampled 
brightness temperatures to the AMSR-E dataset. NWP data from ERA-Interim are used as 

auxiliary data. As for the AMSR-E processing, the GBCS software package is used to 

interpolate the auxiliary data to the satellite raster. 
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2.2.4 Preprocessing 

Preprocessing of the input data is necessary before running the regression model. Different 

fields need to be calculated depending on the input data used. For AMSR-E and AMSR2, 

the following fields need to be calculated: 

§ Relative angle between satellite azimuth angle and wind direction (𝜑!"#), which 
is calculated by the following expression 

𝜑!"# = 𝜑$%& − 𝜑'(	

where 𝜑$%& is the satellite azimuth angle, relative to north, and 𝜑'( is the wind direction, 

relative to north, that the wind is blowing toward. 

§ Sun glint angle (𝜑$)%), which is calculated by the following expression 

𝜑$)% = arccos(sin(𝜃$*#) ⋅ sin(𝜃$%&) ⋅ cos(𝜙!"# + 180) + cos(𝜃$*#) ⋅ cos(𝜃$%&))	

	

where 𝜃$*# and 𝜃$%& are the solar zenith angle and satellite zenith angle, respectively, and 𝜙!"# is 

the relative azimuth angle between solar azimuth angle (𝜑$*#) and satellite azimuth angle (𝜑$%&). 

2.3 Algorithm description 

2.3.1 WS retrieval algorithm 

A regression-based retrieval algorithm is used to retrieve WS given satellite brightness 

temperatures and NWP fields. The WS retrieval algorithm described here is a two-step 

multiple linear regression model. In the first step, an initial estimate of WS is retrieved using 
a global retrieval algorithm, i.e. one set of regression coefficients is used for all wind 

speeds. In the second stage, a final WS is retrieved using specialized WS algorithms, i.e. 

the algorithm is trained to perform well over restricted WS domains. 

2.3.1.1 1st-step: Global retrieval algorithm 

An initial estimate of wind speed (𝑊𝑆+) is obtained through the use of a global regression 

model, where the regression coefficients are obtained through training on the 
WSS1_TRAIN subsets. The WS retrieval algorithm is inspired by the NOAA AMSR-2 WS 

retrieval algorithm (Chang et al., 2015) and expresses WS in terms of brightness 

temperature (𝑇,) and incidence angle (𝜃"-%) 

 𝑊𝑆+ = 𝑎. +9(𝑎/0𝑡0 + 𝑎10𝑡01
/.

02/

) + 𝑎3𝜃 (1) 



 Commercial in Confidence  
 
ESA/AO/1-9322/18/I-NB 

ESA CCI+ Phase 1 Sea Surface Temperature 
(SST) 

 
2 July 2020 

Algorithm Theoretical Basis Document D2.1  v1 

 
Commercial in Confidence 

7 

where 

𝑡0 = 𝑇,0 − 150, 
for all channels except the 23.6 GHz 

channels 
(2) 

𝑡0 = ln(290 − 𝑇,0), for the two 23.6 GHz channels (3) 

𝜃 = 𝜃"-% − 55  (4) 

The coefficients 𝑎., 𝑎/, 𝑎1 and 𝑎3 are regression coefficients, referred to as 𝐁𝐠𝐥𝐨𝐛𝐚𝐥, 

determined through use of a training dataset, the summation index 𝑖 represents the 

summation over 10 AMSR-E channels; 6.9, 10.7, 18.7, 23.6 and 36.5 GHz (dual 

polarization), and 𝑇,0 denotes the brightness temperature for the 𝑖th channel. 

2.3.1.2 2nd-step: Specialized WS retrieval algorithms 

In the second stage, a final wind speed (𝑊𝑆9) is retrieved through the use of a specialized 

WS regression model, using the same retrieval algorithm as in the first step. Regression 

coefficients are derived through training on subsets of the WS2_TRAIN subsets, defined 

for restricted reference WS intervals. Retrieved WS from the first stage (𝑊𝑆+) is used to 

determine the correct WS bin, from which regression coefficients are selected to perform 

the WS retrieval. The specialized algorithms are derived for reference wind speeds in the 

interval 0 to 20 ms-1, with a bin size of 1 ms-1, giving a total of 20 specialized WS algorithms, 

which takes the form 

 𝑊𝑆9: = 𝑏.: +9(𝑏/0:𝑡0 + 𝑏10:𝑡01
/.

02/

) + 𝑏3:𝜃 (5) 

where 

𝑡0 = 𝑇,0 − 150, 
for all channels except the 23.6 GHz 

channels 
(6) 

𝑡0 = ln(290 − 𝑇,0), for the two 23.6 GHz channels (7) 

𝜃 = 𝜃"-% − 55  (8) 

where 𝑘 denotes the reference WS. The coefficients 𝑏., 𝑏/, 𝑏1 and 𝑏3 are regression 

coefficients, referred to as 𝐁𝐖𝐒, determined through use of a training dataset. The final 

retrieved WS is found by performing a linear interpolation between 𝑊𝑆9: and the WS 

retrieved using the closest neighboring WS algorithm 
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 𝑊𝑆9 = 9 𝑤:=:!𝑊𝑆9:

:!>/

:2:!

 (9) 

where 

 𝑤. = 1 − 𝛼 (10) 

 𝑤/ = 𝛼 (11) 

 𝛼 =
𝑊𝑆+
𝛥𝑘 − 𝑘. (12) 

 𝑘. = floor H
𝑊𝑆9
𝛥𝑘 I 

(13) 

and 𝛥𝑘 = 1 ms-1 is the WS bin size. Using constant wind intervals ensures that intervals 

with few observations get adequate weight. 

2.3.2 SST retrieval algorithm 

We use a regression model to retrieve SST given satellite brightness temperatures and 

NWP fields. The retrieval algorithm is inspired by the RSS AMSR-E SST retrieval algorithm 

(Wentz and Meissner, 2007) and expresses SST in terms of brightness temperature (𝑇,), 

incidence angle (𝜃"-%), retrieved wind speed (𝑊𝑆9) and the relative angle between satellite 

azimuth angle and NWP wind direction (𝜑!"#). The SST retrieval algorithm uses 12 

brightness temperature channels; 6.9, 10.7, 18.7, 23.8, 36.5 and 89.0 (vertical and 

horizontal polarization). The SST retrieval algorithm described here is a two-step multiple 

linear regression model with specialized regression algorithms. With “specialized” we mean 

that the algorithm is trained to perform well over specialized domains. In the first stage, the 

algorithm is trained to perform well over restricted latitude domains and for ascending and 

descending orbit, respectively, whereas in the second stage, the algorithm is trained to 
perform well over restricted SST and WS domains. 

2.3.2.1 1st-step: Specialized latitude and ascending/descending retrieval algorithms 

An initial estimate of SST (𝑆𝑆𝑇+) is obtained through the use of a specialized orbit and 

latitude regression retrieval algorithm. Regression coefficients are obtained through training 

on subsets of the SST_TRAIN subsets, defined for restricted reference latitude intervals 

and for ascending and descending orbits. Latitude and ascending or descending orbit are 
used to determine the correct latitude and orbit bin, from which regression coefficients are 

selected to perform the SST retrieval. The specialized algorithms are derived for reference 
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latitudes in the interval -90 to 90°, with a bin size of 2°, and ascending (0) or descending 

(1) orbit, giving a total of 182 specialized latitude and orbit algorithms, which takes the form 

 

𝑆𝑆𝑇+?@ = 𝑐.?@ +9(𝑐/0?@𝑡0 + 𝑐10?@𝑡01)
/1

02/

+ 𝑐3?@𝜃 + 𝑐A?@𝑊𝑆9 

+9K𝑐BC?@ cos 𝑗𝜑!"# + 𝑐DC?@ sin 𝑗𝜑!"#M
1

C2/

 

(14) 

where 𝑙 denotes the reference latitude and 𝑚 denotes the reference orbit, which ranges 

from 0 (descending) to 1 (ascending). The coefficients 𝑐., 𝑐/, 𝑐1, 𝑐3, 𝑐A, 𝑐B and 𝑐D are 

regression coefficients, referred to as 𝐁𝐋𝐀𝐓,𝐎𝐑𝐁, determined through use of the SST_TRAIN 

subset. The initial estimate of SST is found by performing a linear interpolation between 

𝑆𝑆𝑇+?@ and the SST retrieved using the closest neighboring latitude and orbit algorithm 

 𝑆𝑆𝑇+ = 9𝑤?=?!𝑆𝑆𝑇+?@

?!>/

?2?!

 (15) 

where 

 𝑤. = 1 − 𝛼 (16) 

 𝑤/ = 𝛼 (17) 

 𝛼 =
𝜙#%&
Δ𝑙 − 𝑙. (18) 

 𝑙. = floor H
𝜙#%&
𝛥𝑙 I 

(19) 

and 𝜙#%& denotes latitude and 𝛥𝑙 = 2° is the latitude bin size. 

2.3.2.2 2nd-step: Specialized SST and WS retrieval algorithms 

In the second stage, final SST (𝑆𝑆𝑇9) is retrieved through the use of a specialized SST and 

WS regression model. Regression coefficients are obtained through training on subsets of 

the SST_TRAIN subset, defined for restricted reference SST and WS intervals. Retrieved 

wind speed (𝑊𝑆9) and the retrieved SST from the first stage (𝑆𝑆𝑇+) are used to determine 

the correct SST and WS bin, from which regression coefficients are selected to perform the 

SST retrieval. The specialized algorithms are derived for reference SSTs in the interval -2 
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to 34°C, with a bin size of 2°C, and reference WS in the interval 0 to 20 ms-1, with a bin 

size of 2 ms-1, giving a total of 209 specialized SST and WS algorithms, which takes the 

form 

 

𝑆𝑆𝑇9LM = 𝑑.LM +9K𝑑/0LM𝑡0 + 𝑑10LM𝑡01M
/1

02/

+ 𝑑3LM𝜃 + 𝑑ALM𝑊𝑆9 

+9K𝑑BCLM cos 𝑗𝜑!"# + 𝑑DCLM sin 𝑗𝜑!"#M
1

C2/

 

(20) 

where 𝑛 denotes the reference SST and 𝑝 denotes the reference WS. The coefficients 𝑑., 

𝑑/, 𝑑1, 𝑑3, 𝑑A, 𝑑B and 𝑑D are regression coefficients, referred to as 𝐁𝐒𝐒𝐓,𝐖𝐒, and are 

determined through use of subsets of the SST_TRAIN subsets. The final retrieved SST is 

found by performing a bi-linear interpolation between 𝑆𝑆𝑇9LM and the SSTs retrieved using 

the three closest neighboring SST and WS algorithms 

 𝑆𝑆𝑇9 = 9 9 𝜔L=L!,M=M!𝑆𝑆𝑇9LM

M!>/

M2M!

L!>/

L2L!

 (21) 

where 

 𝜔.,. = (1 − 𝛽) ⋅ (1 − 𝛾) (22) 

 𝜔/,. = 𝛽 ⋅ (1 − 𝛾) (23) 

 𝜔.,/ = (1 − 𝛽) ⋅ 𝛾 (24) 

 𝜔/,/ = 𝛽 ⋅ 𝛾 (25) 

 𝛽 =
𝑆𝑆𝑇+
Δ𝑛 − 𝑛., 𝛾 =

𝑊𝑆9
Δ𝑝 − 𝑝. (26) 

 𝑛. = floor H
𝑆𝑆𝑇+
Δ𝑛 I , 𝑝. = floor H

𝑊𝑆9
Δ𝑝 I (27) 

and 𝛥𝑛 = 2°C and 𝛥𝑝 = 2 ms-1 is the SST and WS bin size, respectively. 
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2.3.3 RFI filter 

The baseline SST retrieval algorithm, described in Section 2.3.2, uses 12 brightness 

temperature channels; 6.9, 10.7, 18.7, 23.6, 36.5 and 89.0 GHz (dual polarization). For 

detection of RFI, two additional SST retrieval algorithms were defined; the -10GHz and -

18GHz algorithms. Typically, RFI frequencies are very specific in terms of the frequency 

and will thus only enter one channel. Using alternative retrievals with a different channel 

constellation are useful for filter for RFI. These retrievals are formulated exactly as the 

baseline algorithm, with the exception that they use only 10 brightness temperature 

channels; the same as the baseline algorithm minus the 10 GHz channel (-10GHz 
algorithm) and minus the 18 GHz channels (-18GHz algorithm). As for the baseline retrieval 

algorithm, WS is first retrieved using the two-step regression model with the baseline WS 

algorithm and then the two-step regression model is used to retrieve SST. 

A new RFI mask, based on the two additional retrieval algorithms, has been developed. A 

3σ-filter on the difference between retrieved SST for the two additional algorithms, -10GHz 

and -18GHz, and the baseline algorithm is used to detect RFI. Data is flagged if any of the 

following expressions is true 

 !(𝑆𝑆𝑇r,baseline − 𝑆𝑆𝑇r,-10GHz) − 𝜇-10GHz! > 3𝜎-10GHz (28) 

 !(𝑆𝑆𝑇r,baseline − 𝑆𝑆𝑇r,-18GHz) − 𝜇-18GHz! > 3𝜎-18GHz (29) 

where 𝑆𝑆𝑇r,-10GHz, 𝑆𝑆𝑇r,-18GHz and 𝑆𝑆𝑇r,baseline are the final retrieved SST using the -10GHz, -

18GHz and baseline algorithms, respectively. µ-10GHz and µ-18GHz denote the mean of the 

difference 𝑆𝑆𝑇r,-10GHz − 𝑆𝑆𝑇r,baseline  and 𝑆𝑆𝑇r,-18GHz − 𝑆𝑆𝑇r,basesline , respectively, whereas 

𝜎-10GHz and 𝜎-18GHz denote the standard deviation of the corresponding differences. The 

mean and standard deviation of differences used are shown in Table 1. 

Table 1: Mean and standard deviation of differences for retrieved SSTs using the -
10GHz and -18GHz algorithm minus baseline retrieved SST. 

Sensor µ-10GHz 
(K) 

µ-18GHz (K) σ-10GHz (K) σ-18GHz (K) 

AMSR-E 0.0024 0.0071 0.192 0.138 

AMSR2 -0.0087 0.0043 0.170 0.130 
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2.3.4 Uncertainty model 

Following the approach within the ESA-CCI SST project (Rayner et al., 2015), the total 

uncertainty for the retrieved SST can be divided into three independent components; a 

random component (𝜀9+L]^@) a local systematic component (𝜀?^_+?) and a global systematic 

component (𝜀`?^a+?). The total uncertainty is given by 

 

 𝜀$$&" = [𝜀9+L]^@1 + 𝜀?^_+?1 + 𝜀`?^a+?1  (30) 

The local systematic uncertainty component and the random uncertainty component are 

both retrieved through the use of a regression model. The global systematic uncertainty 

component is assumed to be small and is therefore populated by zeros. 

To get an estimate of the local systematic and the random uncertainty components, an 

NEDT of 0.1 K (Wentz and Meissner, 2000) was propagated through the SST retrieval 

algorithm and a new set of SSTs were obtained (𝑆𝑆𝑇9,9L]). The data in the UNCERT_TRAIN 

subset was then pre-binned for retrieved SST, retrieved WS, latitude and solar zenith angle. 
Two standard deviations were calculated 

§ σ∆SSTr: the standard deviation of the SSTr minus in situ SST difference; and 

§ σ∆SSTr,rnd: the standard deviation of the SSTr minus SSTr,rnd difference. 

The first standard deviation, σ∆SSTr, is used to represent local effects, including drifter 

uncertainty and sampling effect, on the total uncertainty, whereas the second standard 

deviation, σ∆SSTr,rnd, is used to represent random and uncorrelated effects. 

The same retrieval algorithm is used for both the local systematic uncertainty component 

and the random uncertainty component. The uncertainties are expressed in terms of 

baseline retrieved SST (𝑆𝑆𝑇9), retrieved wind speed (𝑊𝑆9), solar zenith angle (𝜃$*#) and 

latitude (𝜙#%&) 

 

𝜀$$&" = 𝑒. + 𝑒/𝑆𝑆𝑇9 + 𝑒1𝑆𝑆𝑇91 + 𝑒3𝑊𝑆9 + 𝑒A𝑊𝑆91 + 𝑒B𝜃$*# + 𝑒D𝜃$*#1  

+9H𝑒bM cos
𝜙#%&
𝑝 + 𝑒cM sin

𝜙#%&
𝑝 I

A

M2/

 
(31) 
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where the coefficients 𝑒., 𝑒/, 𝑒1, 𝑒3, 𝑒A, 𝑒B, 𝑒D, 𝑒b and 𝑒c are regression coefficients, denoted 

Blocal and Brnd for the local and random uncertainty components, respectively, which are 

determined through training on the UNCERT_TRAIN subsets. 𝑝 is a summation index for 

the harmonic function used for the latitude. 

The retrieval algorithm for the random uncertainty component was regressed towards 

σ∆SSTr,rnd. To obtain only the variations due to local systematic effects, the local systematic 

uncertainty component was regressed towards pre-binned standard deviations where 

uncorrelated random effects, as well as drifter uncertainty and sampling effects, were 

excluded, σlocal. The drifter uncertainty was set to 0.2 K  and the sampling effect was 

assumed to be mainly spatial (Høyer et al., 2012) and was therefore estimated by 
calculating the pixel-to-footprint variability for one year of GHRSST Level 4 DMI_OI Global 

Foundation Sea Surface Temperature Analysis (DMI, 2007).  

2.3.5 L2P flags and quality levels 

The MWR SST CDR retrievals follow the GHRSST GDS 2.0 data specification (GHRSST 

Science Team, 2010) for L2P and each retrieval was assigned a quality level to denote the 

quality of the retrieval. The definition of quality levels, together with corresponding checks 

and thresholds, are shown in Table 2. 

The quality of the individual SST retrievals is represented by a quality level, ranging from 0 

to 5. Quality level 0 denotes the lowest quality indicator level, which is assigned if no data 
is retrieved. Quality level 1 is the lowest quality level for retrievals, indicating retrievals of 

bad quality which should not be used, whereas quality level 5 is the highest quality level, 

only given to retrievals with the best quality. Retrievals are assigned quality level 1 if the 

input data is of bad quality or if the retrieval is compromised, e.g. due to atmospheric and 

surface effects. The following criteria decide if a retrieval is of quality level 1: 

AMSR-E scan quality or channel quality indicates bad satellite data. 

§ Any brightness temperature is outside the normal range (0	K < 𝑇, < 320	K). 

§ Sea ice contamination. 

§ Coastal contamination. 

§ Contamination due to RFI (masked according to section 2.3.3). 

§ Rain contamination (𝑇,/cd ≥ 240 K). 

§ Sun glitter contamination (𝜑$)% ≤ 25°). 
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§ Cases where the atmospheric contribution exceeds the information from the 
surface, i.e. if the difference between the horizontal and vertical polarization 
brightness temperatures for channel 18-36 GHz is negative. 

§ The retrieved WS is outside the accepted range (0 ms-1 ≤ 𝑊𝑆9 ≤ 20 ms-1). 

§ The retrieved SST is outside the accepted range (-2 °C ≤ 𝑆𝑆𝑇9 ≤ 35 °C). 

§ The retrieved SST deviates with more than 10 °C from a background SST. 

Quality level 2, which denotes the worst-quality yet usable retrievals, is assigned to 

retrievals with a total uncertainty greater than 1. In addition, the proximity to sea ice and 

land is also used to determine if the retrieval is of quality level 2. If the distance to sea ice 

is less than 200 km or if the distance to land is less than 40 km, the retrieval is classified 

as being of quality level 2. Quality level 3 to 5 are determined based solely on the retrieved 

total SST uncertainty. If the SST uncertainty is in the range 0.5-1 K, the retrieval is assigned 

quality level 3 (low quality), if it is in the range 0.35-0.5 K, the retrieval is assigned quality 
level 4 (acceptable quality) and if the uncertainty is 0.35 K or smaller, the retrieval is 

assigned quality level 5 (best quality). 

Table 2. Quality levels with corresponding checks and thresholds. 

# Description Checks and thresholds 

0 No data  

1 Bad data Quality controls and various 

atmospheric and surface effects 

2 Worst-quality usable 
data 

§ 𝜀112! ≥ 1 

§ Proximity to sea ice 

§ Proximity to land 

3 Low quality 0.50 < 𝜀""#! < 1 

4 Acceptable quality 0.35 < 𝜀""#! ≤ 0.50 

5 Best quality 𝜀""#! ≤ 0.35 
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2.3.6 Regression setup 

The setup of the DMI regression model with the different processes and steps is illustrated 

in Alerskans et al., 2020. The observation loop is started for each satellite pixel by reading 

in the satellite orbital data and the auxiliary data (NWP fields). The next step is to read in 

all regression coefficients, whereupon the retrieval process can begin. First, the 1st-stage 

global WS retrieval algorithm is used to retrieve an initial estimate of WS (WSa). Thereafter, 

𝑊𝑆+ is used to select regression coefficients for the second step of the WS retrieval 

algorithm, 𝐁𝐖𝐒. Subsequently, final retrieved WS (𝑊𝑆9) is computed using the specialized 

WS retrieval algorithms. Next, the two-step SST retrieval algorithm is performed for the 

three SST retrieval algorithms; baseline, -10GHz and -18GHz, with the algorithm loop being 

initialized with the baseline algorithm (𝑖 = 0). First, latitude and ascending/descending orbit 

are used to select regression coefficients for the 1st-stage SST retrieval algorithm, 

𝐁𝐚𝐥𝐠𝐨𝐢,𝐋𝐀𝐓,𝐎𝐑𝐁, whereupon the specialized latitude and ascending/descending retrieval 

algorithm is used to compute an initial estimate of retrieved SST (𝑆𝑆𝑇+,+?`^$). For the final 

SST retrieval, the initially retrieved SST (𝑆𝑆𝑇+,+?`^$) and the final retrieved WS (𝑊𝑆9) are 

used to select regression coefficients, 𝐁𝐚𝐥𝐠𝐨𝐢,𝐒𝐒𝐓,𝐖𝐒. In the following step, a final retrieved 

SST (𝑆𝑆𝑇9,+?`^$) is computed using the specialized SST and WS retrieval algorithm. The 

algorithm loop is then performed for the two additional algorithms, -10GHz (𝑖 = 1) and -

18GHz (𝑖 = 2). When exiting the algorithm loop, RFI is detected and masked using the new 

proposed RFI mask. In the next step, regression coefficients 𝐁𝐥𝐨𝐜𝐚𝐥 and 𝐁𝐫𝐧𝐝 for the 

uncertainty retrieval algorithm are used to compute the uncertainty for the baseline-

retrieved SST (𝜀$$&"). Thereafter, the retrieval is assigned a quality level and flagged 

according to the quality level and L2P flagging criteria described in section 2.3.5. Finally, 

the baseline retrieved SST and uncertainty is saved together with the L2P flags and quality 

levels. 
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Figure 1: Setup of the DMI regression model for MWR SST retrievals using AMSR-
E/2 orbital data as input. 𝒊 denotes the algorithm used to retrieve SST; baseline (𝒊 =

𝟎), -10GHz (𝒊 = 𝟏) and -18GHz (𝒊 = 𝟐). 

2.4 Output data 

The outputs from the regression retrieval algorithm are 

§ Sea surface temperature (SSTr,baseline), in Kelvin. 

§ Local systematic uncertainty component (εlocal), in Kelvin. 

§ Random uncertainty component(εrnd), in Kelvin. 

 

WS retrieval 1st step: Global  
Compute: 𝑾𝑺𝒂 

WS retrieval 2nd step: Wind speed  
Compute: 𝑾𝑺𝒓 

𝐁𝐠𝐥𝐨𝐛𝐚𝐥	

𝐁𝐖𝐒 

𝐁𝐚𝐥𝐠𝐨𝐢,𝐒𝐒𝐓,𝐖𝐒 

Uncertainty retrieval 
Compute: 𝜺𝐥𝐨𝐜𝐚𝐥,𝜺𝐫𝐧𝐝 

Read: AMSR-E/2 orbital 
data and NWP data 

𝐁𝐚𝐥𝐠𝐨𝐢,𝐋𝐀𝐓,𝐎𝐑𝐁 SST retrieval 1st step: Latitude + asc/dsc orbit 
Compute: 𝑺𝑺𝑻𝒂,𝒂𝒍𝒈𝒐𝒊 

SST retrieval 2nd step: SST + wind speed 
Compute: 𝑺𝑺𝑻𝒓,𝒂𝒍𝒈𝒐𝒊 

 

𝒊 > 𝟐? 

Observation loop 

YES 

Algorithm loop: 𝒊 = 𝒊 + 𝟏 
 

NO 

𝒊 = 𝟎 

𝜺𝐥𝐨𝐜𝐚𝐥 
𝜺𝐫𝐧𝐝 
𝜺𝐠𝐥𝐨𝐛𝐚𝐥 
𝜺𝐒𝐒𝐓𝐫 
𝑾𝑺𝐫 

Write results: 
𝑺𝑺𝑻𝐫,𝐛𝐚𝐬𝐞𝐥𝐢𝐧𝐞  

L2P flags 
Quality levels 

𝐁𝐥𝐨𝐜𝐚𝐥, 𝐁𝐫𝐧𝐝 

L2P flagging 
Quality level ranking 



 Commercial in Confidence  
 
ESA/AO/1-9322/18/I-NB 

ESA CCI+ Phase 1 Sea Surface Temperature 
(SST) 

 
2 July 2020 

Algorithm Theoretical Basis Document D2.1  v1 

 
Commercial in Confidence 

17 

§ Global systematic uncertainty component (εglobal), in Kelvin. 

§ Total SST uncertainty (εSSTr), in Kelvin. 

§ Wind speed (WSr), in ms-1. 

§ L2P flags. 

§ Quality levels. 
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3. OPTIMAL ESTIMATION TUNING 

3.1 Introduction 

Merchant et al. (2020) have presented a theory for using reference SSTs to determine bias 

correction and error covariance parameters for OE in the case of infrared SST retrieval. OE 

SST is used for AVHRR 2- and 3-channel retrievals in SST CCI in order to achieve known 

and satisfactory levels of SST sensitivity, by explicitly using prior NWP to address deficits 

in the window-channel information about the atmospheric influence on brightness 

temperatures. The OE solution is obtained in one step, because the retrieval context is 
adequately linear. 

OE for microwave SST differs from the infrared case in the following respects: 

• a larger state vector is needed, comprising (at least) SST, total column water 
vapour (TCWV), wind speed (U) and cloud liquid water (CLW) 

• a larger observation vector is needed, comprising two or more channels (minimum: 
~7 GHz and ~10 GHz) in two polarisations 

• a larger and non-linear dependence of the signals (BTs) on wind speed via surface 
emissivity effects, meaning that in the microwave OE is applied as a moderately 
non-linear retrieval, requiring some iterations rather than a single step 

The theory developed for the infrared therefore need to be extended to the case of 

moderately non-linear OE. This theoretical extension is presented here. 

3.2 Moderately non-linear optimal estimation 

The approach presented here is obtained from Rodgers (2000). The prior for a retrieval is 

a reduced state vector 𝒛+. Let the 𝑘th iterative retrieved state vector be 𝒛:,  then Newtonian 

iteration to the OE solution means that  

𝒛: = 𝒛+ + 

K𝑲:=/
i𝑺j=/𝑲:=/ + 𝑺+=/M

=/𝑲:=/
i𝑺j=/K𝒚 − 𝑭(𝒛:=/) +	𝑲:=/(𝒛:=/ − 𝒛𝒂)M 

(32) 

  

where the iteration starts from 𝑘 = 1  with  𝒛:=/ = 𝒛. = 𝒛𝒂 . Here 𝑭(𝒛:=/) is the forward 

model calculated from the full state vector corresponding to the previous reduced state 

vector estimate; 𝑲:=/  is the corresponding set of partial derivatives of the forward model 

brightness temperature with respect to the reduced state vector elements; 𝒚 is the 

observation vector; 𝑺+=/  is the inverse of the prior error covariance matrix; and 𝑺j=/  is the 

inverse of the error covariance in the observation-simulation difference (i.e., includes 
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instrument errors and forward modelling errors). 0 32 is iterated until 𝒛:=/  is within linear 

range of the final solution (convergence is reached). 

3.3 Extension to parameter estimation with reference observations 

The method of Merchant et al. (2020) is here modified to an equivalent formulation that 

uses reference observations as observations (as elements in the observation vector) rather 
than (as previously) using them to modify the prior state vector. This is a practical 

simplification. 

The concept of OE tuning is that the reference observations are assumed, by definition, to 

be unbiased (although with some uncertainty in each reference observation), and that they 

enable inference of useful bias corrections (to observations and to the prior). Additionally, 

self-consistency requirements on the retrieval and the outcomes are available to improve 

estimation of the error covariance assumptions.  

All biases and error covariance matrices can be derived as a function of relevant quantities, 
which is here done by binning data and assuming piecewise linear interpolation between 

bins. This piece-wise linear aspect is not explicitly present in the equations for simplicity: 

the equations describe effectively the derivation of parameters for a single bin. 

The basis of the tuning is to extend the observation vector with the reference observations, 

𝝆	: 

 

𝒚l = m
𝒚
𝝆n 

(33)  

and to extend the retrieved state to include bias parameters, for the bias in the prior state 

(𝜸′) and the observation (𝜷): 

𝒛r = s
𝒛
𝜸′
𝜷
t 

(34)  

𝜸′ may contain prior state bias correction values for a shorter list of elements than the full 

state vector (we may only feel we can bias correct some aspects), which is indicated by the 

prime. 𝜸  refers to a vector the same length as 𝒛+ in which the elements not in 𝜸′ are padded 

with zeros, so that when we write "𝒛+ + 𝜸" it is clear that the non-bias-corrected elements 

in 𝒛+ are unchanged. 
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The assumed property of reference observations means 

𝝆 = 𝒛ll + 𝝐𝝆	; 	 〈𝝐𝝆〉 = 𝟎 
(35)  

where 𝒛ll is the true state of a subset (indicated by the double prime) of the elements of the 

state vector 𝒛 (those elements for which we have reference observations), and 𝝐𝝆 is the set 

of errors for a given instance of reference observations. These errors are assumed to be 

zero mean by our definition of reference observations (and will usually be independent of 

each other too, which is hereafter assumed). Unbiasedness implies that the reference 
observations are fully sensitive to changes in the aspect of the state they measure. 

The extended forward model evaluated for the prior state, given bias correction parameters, 

is 

 

𝑭y(𝒛r𝒂) = z𝑭
(𝒛+ + 𝜸) + 𝜷
𝜬(𝒛+ + 𝜸)

| 
(36)  

 

Here 𝜬 is our forward model of the reference observations given a state vector, and is 

simply 𝜬(𝒛) = 𝒛′′. 

The K matrix is "doubly extended" since it has dimensions of the extended observation 
vector times the extended state vector. 

𝑲yy =

⎣
⎢
⎢
⎢
⎡
𝝏𝑭
𝝏𝒛�𝒛%>𝜸

𝝏𝑭
𝝏𝜸′�𝒛%>𝜸

𝝏𝑭
𝝏𝜷�𝒛%>𝜸

𝝏𝜬
𝝏𝒛�𝒛%>𝜸

𝝏𝜬
𝝏𝜸′�𝒛%>𝜸

𝝏𝜬
𝝏𝜷�𝒛%>𝜸⎦

⎥
⎥
⎥
⎤
 

(37)  

 

Where the prior state bias corrections are not too large, we can use the approximation 
𝝏𝑭
𝝏𝒛
�
𝒛%>𝜸

= 𝝏𝑭
𝝏𝒛
�
𝒛%

 . 

 

Given the form of the forward model, clearly 𝝏𝑭
𝝏𝜸l
�
𝒛%>𝜸

= 𝝏𝑭
𝝏𝒛l
�
𝒛%>𝜸

 and  𝝏𝑭
𝝏𝜷
�
𝒛%>𝜸

= 𝑰.  
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𝝏𝜬
𝝏𝒛&&
�
𝒛%>𝜸

= 𝑰 (the "fully sensitive" assumption), while 𝝏𝜬
𝝏𝒛
�
𝒛%>𝜸

is similar but with additional 

columns of zeros corresponding to the elements that don't have reference measurements 

-- we write this zero-padded identity matrix as 𝝏𝜬
𝝏𝒛
�
𝒛%>𝜸

= 𝑰ll.   

 

The i-jth element of 𝝏𝜬
𝝏𝜸l
�
𝒛%>𝜸

 is 1 wherever the ith element of	𝝆 is an observation of the state 

vector element bias-corrected by the jth element of 𝜸′  and is zero elsewhere. It can be 

expected that all state vector elements with reference observations will appear in 𝜸′ (i.e., 

their prior will be bias corrected), but since the anchoring from the references may help de-

bias some other elements too, 𝜸′ may be longer than 𝝆. Thus, this is another extended 

identify matrix, and we write this matrix as 𝝏𝜬
𝝏𝜸l
�
𝒛%>𝜸

= 𝑰′. 

 

 𝝏𝝆
𝝏𝜷
�
𝒛%>𝜸

= 𝟎.  

 

Thus, combining these considerations: 

𝑲yy ≅ �
𝝏𝑭
𝝏𝒛�𝒛%

𝝏𝑭
𝝏𝒛′�𝒛%

𝑰

𝑰ll 𝑰l 𝟎
� 

(38)  

 

The extended observation vector requires an extended observation error covariance 

matrix, given by 

 

𝑺�𝝐 = z
𝑺𝝐 𝟎
𝟎 𝑺𝝆| 

(39)  
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where 𝑺𝝆 contains the known (or at least, characterised) error covariances of the reference 

data, each of which are independent of all other observations, and hence 𝑺𝝆 is diagonal 

and the off-diagonal blocks are zero matrices. 

3.4 Bias correction parameters 

Bias correction parameters are obtained by doing the extended retrieval formulated above 

across iterations 𝑖 across randomly drawn satellite-reference matches until the bias 

correction parameters converge. This iteration over matches is an outer loop, with the 

iterative retrieval for each given match as an inner loop. This is expressed below: 

𝒛r:0 = 𝒛r+ + 

H𝑲yy:=/
i
𝑺�j=/𝑲yy:=/ + 𝑺�=/I

=/
𝑲yy:=/

i
𝑺�j=/ �𝒚l − 𝑭yK𝒛r:=/0=/ M + 𝑲yy:=/(𝒛r:=/0=/ − 𝒛r+)� 

 

𝒛r:=/0=/ = s
𝒛:=/ + 𝜸0=/

𝜸′0=/
𝜷0=/

t 

 

𝑲yy = �
𝝏𝑭
𝝏𝒛�𝒛'()>𝜸$()

𝝏𝑭
𝝏𝒛′�𝒛'()>𝜸$()

𝑰

𝑰ll 𝑰l 𝟎
� 

𝑺� = �
𝑺+ + 𝑺u$() 𝟎 𝟎

𝟎 𝑺u$() 𝟎
𝟎 𝟎 𝑺v$()

� 

(40)   

 

The index 𝑖 is updated only after the iterations of 𝑘 conclude, and then the new parameter 

estimates are passed on to the next randomly selected match 𝑖 + 1. 

The error covariance matrix for the retrieval is: 
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In implementing this with a matchup database, we get a covariance matrix for the retrieval 

which is  

 

𝑺wx$ = �𝑲yyi𝑺j=/𝑲yy + 𝑺�=/�
=/
= �

𝑺w$ 𝑨 𝑩
𝑨i 𝑺u$ 𝑪0
𝑩i 𝑪0& 𝑺v$

� 

(41)   

 

When iterating across the matches, the matrix �
𝑺u$ 𝑪0
𝑪0& 𝑺v$

� is passed to the 𝑺� of the 

subsequent match.    

3.5 Desroziers estimator for observation-simulation error 
covariance matrix 

Having obtained a set of bias correction parameters from the previous steps, these are 

fixed and used in a set of retrievals across all the matches. Again, these retrievals are made 
using the references as additional observations, but the state vector here is not extended, 

since the bias correction parameters are, for this step, fixed. Thus the tangent linear matrix 

is here "singly" extended, 𝑲y = s
𝝏𝑭
𝝏𝒛
�
𝒛%>u

+ 𝝏𝜷
𝝏𝒛
�
𝒛%

𝑰ll
t ≅ s

𝝏𝑭
𝝏𝒛
�
𝒛%

𝑰ll
t.  

Iterative retrieval is undertaken for each match obtaining a converged solution 𝒛�. The 

Desroziers (Desroziers et al., 2005) estimate for the extended observation-simulation error 

covariance matrix, 𝑺��j can be formulated as follows:  

𝑺��j = �
𝑺�j 𝑫
𝑫i 𝑺�𝝆

� =
1
2
〈𝒅9^𝒅+^

i + 𝒅+^𝒅9^
i〉 

𝒅9^ = 𝒚l − 𝑭y(𝒛�) − 〈𝒚l − 𝑭y(𝒛�)〉 

𝒅+^ = 𝒚l − (𝑭y(𝒛�) − 𝑲y𝒛y(𝒛� − 𝒛𝒂)) − 〈𝒚l − (𝑭y(𝒛�) − 𝑲y𝒛y(𝒛� − 𝒛𝒂))〉 

(42)  

where the averages are performed across all the matches to references (perhaps in bins if 

a piece-wise linear dependence for 𝑺��j is required). 𝑲y𝒛y is the tangent linear matrix evaluated 

at the solution state. The result should have the properties that 𝑫~𝟎  and that 𝑺�𝝆 is 
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consistent with what we understand about the uncertainty of the references; these 

considerations add a check that the system is behaving as expected. 

3.6 Desroziers estimate for prior error covariance matrix 

Using the fixed bias correction parameters and the updated estimate for the observation-

simulation error covariance matrix, the (iterative) retrieval is undertaken again for all the 

satellite-reference matches. The set of new results is used to evaluate an estimate for the 

prior error covariance matrix: 

𝑺�+ =
1
2
〈�𝑲y𝒛y

i𝑲y𝒛y�
=/
𝑲y𝒛y

𝐓	K𝒅+9𝒅+^
i + 𝒅+^𝒅+9

iM𝑲y𝒛y �𝑲y𝒛y
i𝑲y𝒛y�

=/
〉 

𝒅+9 = 𝑲y𝒛y(𝒛� − 𝒛𝒂) − 〈𝑲y𝒛y(𝒛� − 𝒛𝒂)〉 

(43)  

Where the error covariance matrix has a functional dependence, this is evaluated per bin. 

3.7 Convergence 

Overall convergence of the derived set of OE parameters can be monitored by ensuring 

that the statistic 

su �〈𝑺��j +𝑲y𝒛y𝑺�+𝑲y𝒛y
i〉=/ 〈𝒅+^𝒅+^

i〉 − 𝑰� 
(44)  

decreases as estimate of the OE parameters are iterated. However, it is difficult to identify 

a value of the metric that would indicate convergence for our purposes. A practical 

alternative is to monitor also the change in SST as OE parameters are improved: once the 

SST change is very small (e.g., < 0.01 K) the system is adequately converged. 

3.8 Iteration of parameter cycles 

The steps outlined in sections 3.4 to 3.7 constitute a single cycle of parameter estimation. 

A few cycles of parameter estimation are needed to obtain bias corrections parameters and 

covariance parameters that are fully tuned (meeting the overall convergence criterion) 

because the bias correction estimates respond to the covariances and vice versa. 

3.9 Progress towards exploitation 

This theoretical development has been undertaken within the context of SST CCI Phase 3 

WP 20. Preliminary evaluation of the approach has been promising, indicating that a useful 

approach is to simultaneously use skin-adjusted Argo or drifting buoy SSTs and the best 
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available source of reference wind speeds as simultaneous reference observations. 

However, the preliminary results (not shown, being too preliminary) are not yet mature 

enough for implementation in the v3 CDR. Given the general interest of the approach, ad 

hoc further research will be continued with a view to having a plausible route to 
implementation ready for Phase 4 and the v4 CDR. 
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4. DESERT-DUST RELATED BIASES 

4.1 Introduction 

As explained in (Merchant et al., 2019), there are unsatisfactory levels of negative bias in 

the v2 CDR related to infrared retrieval in the presence of desert-dust aerosol, particularly 

in the single-view retrievals obtained using OE applied to AVHRR instruments. Two steps 

are necessary to improve this situation: infrared algorithm development so as to better deal 

with desert-dust aerosol, such as enabling a measure of such aerosol in OE; and ensuring 

the prior SST used for the OE has low bias in respect of such aerosol. This section 
addresses the latter point. 

The intention for the v3 CDR is to use the v2 analysis SST as prior SST, if that analysis 

can be adequately corrected for desert-dust related SST bias. One approach to this is to 

use v2 microwave SSTs, since these are not biased by desert dust, although they have 

their own complex spatio-temporal bias characteristics. This approach has been pursued 

within SST CCI Phase 3 WP 20, as explained below. 

4.2 Notes on Data  

For a self-consistent and spatially completed field of desert-dust aerosol, we use outputs 

of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis (Inness et al., 2019). 

Data were obtained for 2003 to 2017 inclusive, spanning the period for which CCI v2 SSTs 

are available from microwave radiometers (MWRs). The data were obtained on a grid 

matching the MWR data, namely, daily, 0.5° latitude-longitude resolution. The possible 

variables from the re-analysis describing desert dust are: aerosol optical depth at 550 nm; 

and vertically integrated mass of dust aerosol in three size classes, the coarsest of which 

covers 9 to 20 µm and is most likely to interact with split-window channel brightness 

temperatures. Reasoning that desert-dust related biases in SST CCI data are most likely 
to arise in split-window-based retrievals, the coarse-mode dust mass is used to 

characterise desert dust prevalence in this analysis. 

SSTs estimates that are assumed unbiassed by desert dust are provided by the MWR 

SSTs of CCI v2, which are available on a daily, 0.5° grid. The MWR SSTs come from 

AMSR-E and AMSR-2 retrievals (Alerskans, 2020). While the MWR SSTs are, given the 

negligible interaction of microwaves with aerosols of order 10 µm in size, unbiassed by 

desert dust, the retrievals are prone to a variety of seasonally and locally systematic error 

effects and overall uncertainty ~0.5 K.  
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Lastly, the dataset to be corrected is the CCI v2.1 SST analysis, which is a daily 0.05° 

product spanning 1981 to 2019 (at time of writing). Corrections based on CAMS/MWR data 
can be derived only on a spatial scale that is x10 the analysis resolution and only on a 

climatological basis for times outside the period of the CAMS re-analysis. 

4.3 Notes on methods 

Investigations into the spatio-temporal resolution with which statistically reliable SST 

adjustments with respect to desert dust could be estimated concluded that the seasonally 
and locally variable SST biases in the MWR SST product preclude time and space resolved 

determination of the sensitivity of analysis SST, 𝑥�, with respect to CAMS re-analysis dust 

mass,	𝑚,  𝑠 = z{y
z@

. Therefore, a global all-year average sensitivity is calculated using all 

MWR data (both AMSR-E and AMSR-2) when available.  

A further factor to consider when estimating 𝑠 is that the impact of desert dust on analysis 

SSTs is non-linear because of the interaction of dust loading with cloud detection. The 

heaviest dust events trigger cloud detection and therefore under these conditions, IR SSTs 

entering the SST analysis system are missing over such events rather than being present-

but-biased, and the bias impact on the analysis will be damped therefore for the most 

extreme dust events. For this reason, it is appropriate to estimate 𝑠 by a method that is 

driven more usual (not the extreme) aerosol loadings.  

The procedure used is therefore as follows: 

• for each ocean grid location, 𝑝 = (𝑖, 𝑗), we calculate the 5, 25, 75 and 95 percentile 
levels of dust mass (𝑚B, 𝑚1B, 𝑚bB, 𝑚|B respectively, each implicitly a function of 𝑝), 
across all days for which MWR SSTs are available 

• for each grid location we identify the set 𝑇?^(𝑝) = {𝑡|𝑚B < 𝑚(𝑡, 𝑝) < 𝑚1B	} of times, 
𝑡, for which the dust mass 𝑚(𝑡, 𝑝) satisfies 𝑚B < 𝑚(𝑡, 𝑝) < 𝑚1B ; these constitute 
the “low-aerosol” baseline for each location 

• similarly, identify 𝑇}0(𝑝)) = {𝑡|𝑚bB < 𝑚(𝑡, 𝑝) < 𝑚|B	}, the “high-aerosol” cases 

• calculate 𝑚?^(𝑝) = 	 〈𝑚(𝑡, 𝑝)〉&*+(M), which is the arithmetic average of dust mass for 
the low-aerosol baseline 

• similarly calculate 

𝑚}0(𝑝) = 	 〈𝑚(𝑡, 𝑝)〉&,$(M) 

𝛿?^(𝑝) = 	 〈𝑥#A(𝑡, 𝑝) − 𝑥�'!(𝑡, 𝑝)〉&*+(M) 

𝛿}0(𝑝) = 	 〈𝑥#A(𝑡, 𝑝) − 𝑥�'!(𝑡, 𝑝)〉&,$(M) 
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• not all areas experience a significant variation in dust mass, so identify the set of 
locations 𝑃 = {𝑝|𝑚}0(𝑝) −𝑚?^(𝑝) > 𝑚�}} ; the area of ocean over which dust is 
routinely significant at some point in the annual cycle is ~5% of the total area, so 
choose 𝑚�} to be the 95 percentile of 𝑚bB(𝑝).  

• calculate the typical dust mass sensitivity of the SST analysis as 𝑠 = 〈
�,$=�*+	
@,$=@*+

〉�, 
where a robust mean (median) is used to avoid undue influence of outliers 

• use the variability, 𝜎, of this ratio across 𝑃 as a measure of the uncertainty in 
applying 𝑠 to any given place and time, again measuring variability with a robust 
metric (scaled median absolute deviation from the median, also called “robust 
standard deviation”) 

The sensitivity, 𝑠, is then used to transform the CAMS dust mass for a given location and 

day to an SST correction to apply to the SST analysis, as follows: 

𝛿{(𝑡, 𝑝) = 𝑠.𝑚(𝑡, 𝑝) 

Given the definition of 𝑠, this correction is added to the existing analysis value of SST. 

If the reported SST analysis uncertainty (which doesn’t account for the desert dust bias) is 

𝑢{(𝑡, 𝑝), then the revised uncertainty in the SST analysis thus corrected is taken to be 

¤𝑢{1 ++𝜎1𝑚1 

A limitation of this estimate being that the uncertainty in the re-analysis value of dust mass 
is not explicitly present, although dust mass uncertainty does contribute to the value 

obtained for of 𝜎 and it therefore this uncertainty is at least partially accounted for. 

For the periods outside of the CAMS re-analysis data (prior to 2003), the re-analysis dust 

mass, 𝑚, must be replaced by the climatological value of the dust mass, 𝑚(𝑑, 𝑝) where 𝑑 

refers to the day of year. The climatology calculation uses the years 2003 and 2017 and a 

five-day rolling window centred on the target day of year. A simple average is used, which 
is conservative (in the sense of tending to over-correct) because the dust mass tends to be 

log-normally distributed. The variability (as a standard deviation) around the climatological 

value is also calculated and is designated 𝜎@	 . The uncertainty in the corrected analysis 

SST in the case that the correction is climatological is 

[𝑢{1 + 𝜎1𝑚
1 + 𝑠1𝜎@

1  

where the additional term accounts for the additional uncertainty in the correction arising 
from having to use the climatological rather than specific value. 
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4.4 Notes on results 

As an example, the climatological dust mass distribution for day of year 182 is shown in  

Figure 2, along with the variability around the climatological value.  

 

Figure 2: (Upper) Climatological coarse dust mass for day of year 182, in kg m-2, 
based on CAMS re-analysis for 2003 to 2017. (Lower) Variability (as standard 

deviation) of coarse dust mass about the climatological value. To calculate the 
climatological statistics, a centred five-day window over all available years is used. 

The highest over-ocean mass loadings are off north west Africa, but dust is also significant 

in the Arabian Sea. Over areas where dust is climatologically significant, the variability 

around the climatological value is typically ~50%. However, around the areas where dust 
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is climatologically prevalent, elevated variability extends further, indicating these areas are 

subject to occasional dust events. 

The histogram of 𝑠 obtained is widely spread (Figure 3), with a median value of -2.96 K g-1 

m2 and spread (robust standard deviation) of 0.71 K g-1 m2. The spread arises partly from 

differential impacts of a given dust mass on temperature, because of variations in aerosol 

height in particular; but a significant contribution to the spread arises also from seasonally 

and locally correlated MWR SST errors. The ocean areas retained to make this distribution, 

and their corresponding local estimates of 𝑠, are shown as Figure 4. (As noted in methods, 

the limiting of the area for calculating the sensitivity to the locations 𝑃 shown in the figure 

is to ensure the ratio 
�,$=�*+	
@,$=@*+

 is not ill-conditioned because of a small denominator.) There 

is coherent geographical variation in the estimate of 𝑠, but the degree to which this reflects 

differences in dust impact or coherent MWR SST errors is unknown; for this reason, the 

median rather than local estimates of 𝑠 will be used as the scaling to correct the analysis 

SST. 

 

 

Figure 3: Distribution of estimates of 𝒔 = 𝝏𝒙�
𝝏𝒎

. 
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Figure 4: Locations and result of dust sensitivity calculation per 0.5 degree grid 
cell. 

The average climatological correction that will be applied to the analysis SST using this 
approach is 0.02 K, and the maximum is 1.43 K. The geographical distribution of the largest 

climatological correction during the annual cycle is show in Figure 5. The size of corrections 

are as expected. 

 

Figure 5: Annual maximum of the climatological correction to analysis SSTs for the 
influence of dust aerosol 
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The climatological correction was developed on data during the 2000s, when a mix of dual-

view reference sensors and single-view meteorological IR sensors were informing the SST 

analysis. The climatological correction must be applied prior to the CAMS re-analysis 
period, particularly in the 1980s, when only older, less-well calibrated, single-view sensors 

are available. To check it is valid then, we consider the comparison of the analysis SST 

against an in situ only analysis, HadSST3 (Kennedy et al., 2011a and 2011b). This data 

product is gappy, and estimated on monthly 5 degree scales, which determines the scale 

at which comparison is possible. 

Absolute HadSST3 SST estimates were obtained by adding the HadSST3 ensemble 

median anomaly to the ensemble median climatology. The CCI SST analysis was averaged 

to 5 degree cells. The average for 1982 to 1990 inclusive was created for both datasets, 
per month.  

The comparison of the panels in Figure 6, for the Julys between 1982 and 1990) shows 

clearly that the dust aerosol correction is climatologically beneficial. The same is true for 

other months of the year. This is shown in the table below, where we show the mean and 

standard deviation of the monthly 1982-1990-mean differences across cells in the main 

dust-affected region, namely, 75°W to 75°E, 5°N to 40°N. Although there remains an offset 

between the SST analysis and HadSST3 (the former being cooler) it is less variable around 

the year than before correction. Moreover, the standard deviation across cells is 

considerably improved in the high dust months (March to September). The correction is 

thus inferred to be beneficial to the CCI SST analysis in reducing mean dust-related biases 

in the 1980s. 

 

Month Uncorrected 
Mean / K 

Uncorrected 
SD / K 

Corrected 
Mean / K 

Corrected SD / 
K 

January 0.20 0.22 0.16 0.20 
February 0.24 0.23 0.17 0.21 

March 0.29 0.23 0.19 0.21 
April 0.29 0.23 0.16 0.21 
May 0.31 0.28 0.14 0.21 
June 0.42 0.43 0.15 0.26 
July 0.42 0.45 0.11 0.26 

August 0.41 0.39 0.18 0.24 
September 0.32 0.36 0.17 0.27 

October 0.14 0.25 0.04 0.21 
November -0.03 0.22 -0.08 0.21 
December 0.11 0.21 0.07 0.19 

Table 3: Uncorrected and corrected SST difference statistics over main dust-
affected area of ocean 
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Figure 6: Comparison of HadSST3 and CCI analysis SST in the 1980s, with and 
without climatological correction for dust aerosol (based on dust influence during 

2003 – 2017). 
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