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1. SCOPE 
This is a report in preparation for a comprehensive report on Uncertainty Budget (formally, 

End-to-End Error Evaluation and Uncertainty Budget, E3UB) that will be completed to 
describe the Sea Surface Temperature Climate Change Initiative Version 3 Climate Data 

Record (SST CCI v3 CDR). The full E3UB will be document E3UB D2.2 v3.  

The form of content of this interim E3UB report is: 

• mathematical development of an improved three-component uncertainty 
estimation model for optimal estimation retrievals 

This development arose as part of preparations towards optimal estimation passive 

microwave SST retrievals for potential inclusion in the CDR (in CDR v3 or v4, TBC). 
However, it is applicable also to infrared SSTs, and the method will be implemented across 

the full processing suite. 

A further interim E3UB report (D2.2 v2) will be prepared describing any further 

developments for SST uncertainty, due at month 18 of the project. The validation of the 

developments will be presented in D2.2 v3, as obtained in the v3 CDR. 
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2. UNCERTAINTY MODEL FOR OPTIMAL ESTIMATION 

2.1 Introduction 

Optimal estimation SST is used for AVHRR 2- and 3-channel retrievals in SST CCI in order 

to achieve known and satisfactory levels of SST sensitivity, by explicitly using prior NWP 

to address deficits in the window-channel information about the atmospheric influence on 

brightness temperatures. The OE solution is obtained in one step, because the retrieval 

context is adequately linear. 

SST CCI (in phase 1) recognised that climate data record (CDR) uncertainties are complex 
in that contributing errors have a mix of spatio-temporal correlation length scales, and 

pioneered the principle of modelling uncertainty in three components:  

(1) independent (also known as "random"), which is the component for which there is no 

correlation of errors between different SSTs; a typical source is the error from instrumental 

noise 

(2) locally correlated, which is the component for which errors are strongly coupled for SSTs 

that are close in space and time, but become independent at large separations; a typical 

source is the error from ambiguity in retrieval under the specific atmospheric conditions 
observed 

(3) large-scale correlated (including "systematic" or "common" errors), for which errors are 

coupled at large separations, including across the whole mission; a typical source is 

calibration error 

Optimal estimation is a retrieval framework that provides an uncertainty estimate per 

retrieval. However, in previous SST CCI datasets, we have not been able simply to use 

these OE uncertainties, because their correctness relies on the OE being performed with 
realistic error covariance matrices, which, hitherto, have been poorly estimated. Somewhat 

ad hoc work-arounds have therefore been used. 

However, as explained in Merchant et al. (2020a) and Merchant et al. (2020b), we now 

have a theoretical basis on which to estimate proper error covariance matrices for OE. As 

well as putting Bayesian cloud detection and SST retrieval on a firmer footing, this is 

expected to enable us to use the OE uncertainty framework in the CDR v3. (These 

developments should also be widely applicable across remote sensing where OE is used.) 
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Some further work is necessary, however. The classic OE formulation doesn't consider 

error correlation length scales or how to partition uncertainty into the three components. 

The solution to those needs is presented in this report. 

2.2 Assumptions 

Problem: the uncertainty components for OE retrievals in the SST CCI v2.1 CDR are not 

being optimally distributed between the correlation components (uncorrelated, locally 

correlated, large-scale correlated), since an interim coding solution was implemented 

previously to ensure uncertainties were realistic. Now that more realistic error covariance 

matrices will be available for the OE retrieval, the proper solution for correct distribution of 

uncertainty components is derived here. 

The logic follows Rodgers (2000, chapter 3) but applies it to the specific case of SST 

retrieval. 

Assume that the observations can be described as a true model of the physics and 

instrument (perfectly calibrated), 𝒇, given the true state, 𝒙, plus measurement error, ϵ!. 

The measurement error consists of noise (uncorrelated between pixels) and other errors: 

ϵ! = ϵ" + ϵ#. We have 

𝒚 = 𝒇(𝒙, 𝒃$) + ϵ! 
Eq. 1   

where 𝒃$ is the complete set of true model parameters not included in the state. 

Assume the retrieval method used is bias-corrected optimal estimation (OE) using a 
reduced state vector, but running the forward model with a full state vector. The forward 

model is an approximation, and therefore equals the observation to within some error, 𝜖%. 

(Rodgers puts this error on the other side of and calls it Δ𝒇.): 

𝑭(𝒙) + 𝜷 = 	𝒇(𝒙, 𝒃$) + 𝜖% 
Eq. 2   

where 𝑭(𝒙) is RTTOV (we do not represent or question any internal parameters of RTTOV) 

and 𝜷 are ideal bias corrections of the forward model. 

2.3 Derivation of OE total uncertainty 

The retrieval is 

𝒛1 = 𝒛& + (𝑲'𝑺()*𝑲+ 𝑺&)*))*𝑲'𝑺()* 4𝒚 − 6𝑭(𝒙&) + 𝜷789 
Eq. 3   
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where: any correction for prior bias has been absorbed into the prior and its error 

covariance matrix; we are using standard OE symbols with 𝒛 is a reduced state vector. 

Note that we don't have the ideal bias correction parameters, we have estimates of these, 

𝜷7 from a bias-aware OE procedure (Merchant et al., 2020a). For convenience, define the 

gain, 𝑮: 

𝒛1 = 𝒛& + 𝑮4𝒚 − 6𝑭(𝒙&) + 𝜷789 
Eq. 4   

Using the relationships above, we can substitute for the observations: 

𝒛1 = 𝒛& + 𝑮6𝑭(𝒙) + 𝜷 − 𝜖% + ϵ! − 𝑭(𝒙&) − 𝜷78 
Eq. 5   

Linearising the RTTOV simulation of the (unknown) true state,	𝒛, around the prior, 𝒙&, 

obtains 

𝒛1 = 𝒛& + 𝑮6𝑭(𝒙&) + 𝑲(𝒛 − 𝒛&) + 𝜷 − 𝜖% + ϵ! − 𝑭(𝒙&) − 𝜷78 
Eq. 6   

The unknown error in the retrieved value is therefore 

𝒛1 − 𝒛 = −(𝒛 − 𝒛&) + 𝑮𝑲(𝒛 − 𝒛&) + 𝑮6𝜷 − 𝜷78 + 𝑮(ϵ! − 𝜖%) 

= (𝑮𝑲− 𝑰)(𝒛 − 𝒛&) + 𝑮6𝜷 − 𝜷78 + 𝑮(ϵ! − 𝜖%) 

Eq. 7   

There error covariance of the solution is therefore 

𝑺 = (𝑮𝑲− 𝑰)𝑺&(𝑮𝑲 − 𝑰)' + 𝑮𝑺𝜷,𝑮' + 𝑮𝑺𝝐𝒏𝑮
' + 𝑮𝑺𝝐𝒐𝑮

' + 𝑮𝑺𝝐𝑭𝑮
' 

Eq. 8   

Compared to the standard expression without bias correction parameters, this is identical 

except that the beta term is new, given that 𝑺𝜺 represents our estimate of 𝑺𝝐𝒏 + 𝑺𝝐𝒐 + 𝑺𝝐𝑭. 

We assume we have means to estimate 𝑺𝝐𝒏 such as from the noise level when calibrating 

the instrument against on-board references; FIDUCEO-style analyses (Mittaz et al., 2019) 

can support an estimate of 𝑺𝝐𝒐; 𝑺𝜷,   is estimated in the process of bias-aware OE ; the 

observation-simulation error covariance estimated from optimising OE is  𝑺𝜷, + 𝑺𝝐𝒏 + 𝑺𝝐𝒐 +

𝑺𝝐𝑭 combined. 

Note that 𝑺𝜷,  is estimated in the process for optimising OE and will be available to the 

processor as an auxiliary data file (ADF). 
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2.4 Partitioning of uncertainty 

To partition the uncertainty components by correlation characteristics means we need to 

put each term into "uncorrelated", "locally correlated" or "large-scale correlated" categories.  

 

Term Comments Allocation 

𝑮𝑺𝝐𝒏𝑮
' Instrument noise is assumed uncorrelated.  Uncorrelated 

(𝑮𝑲 − 𝑰)𝑺&(𝑮𝑲 − 𝑰)' This varies with the spatio-temporal scales 

of the difference between the prior and true 

state. 

Locally correlated 

𝑮𝑺𝝐𝑭𝑮
' The forward model error probably varies 

with the spatio-temporal scales of some 
(undetermined) properties of the 

atmosphere which is likely local, although 

large scale is also conceivable. 

Locally correlated 

𝑮𝑺𝜷,𝑮' This is the effect of the inadequacies of the 

bias correction formulation, which, after 

fitting bias dependencies, we expect (TBC) 

to be local rather than large scale. 

Locally correlated 

𝑮𝑺𝝐𝒐𝑮
' This is a combination of locally correlated 

effects (structured effects in the radiances) 
plus calibration, which would be a large-

scale correlated effect. If we have a 

FIDUCEO analysis, we can estimate the 

partitioning. Here, assume large-scale 

dominates. 

Large-scale 

correlated 

 

The practical application in the case where we have: 

1. independent noise estimates (e.g., from calibration cycle), 𝑺𝝐𝒏 , which in general is 
variable through the mission 
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2. information from FIDUCEO-style analysis, or otherwise a reasoned guess, of the 
calibration/large-scale error covariance, 𝑺𝝐𝒄 

3. an empirical determination of the total observation-simulation error covariance, 𝑺𝜺, under 
conditions of known noise 𝑺′𝝐𝒏 

is as follows. 

1. Calculate the non-noise error covariance 𝑺𝜺′ = 𝑺𝜺 − 𝑺′𝝐𝒏 (offline, input to processor along 
with 𝑺& ) 

2. For the retrieval, use the then-current noise in combination with the non-noise, 𝑺𝜺′ + 𝑺𝝐𝒏 
(along with 𝑺& ) 

3. Calculate the uncorrelated uncertainty component as root-of-diagonal-term of 𝑮𝑺𝝐𝒏𝑮
' 

4. Calculate the locally correlated uncertainty component from 	
(𝑮𝑲 − 𝑰)𝑺&(𝑮𝑲 − 𝑰)' + 𝑮(𝑺𝜺′ − 𝑺𝝐𝒄)𝑮

' 
5. Calculate the large-scale uncertainty component from 𝑮𝑺𝝐𝒄𝑮

' 

This is a complete and self-consistent decomposition of uncertainty components. It can be 

applied whether or not we have bias corrections (and we don't need to know 𝑺𝜷,   within the 

processor). 

2.5 Variant for maximum-likelihood-like OE 

In order to manage the retrieval sensitivity (equal to 𝑮𝑲), the OE retrieval has in v2.1 and 

prior SST CCI CDRs been made with a modified prior error covariance matrix, 𝑺&′ in which 

a pessimistic prior SST uncertainty is assumed. This makes the retrieval more sensitive to 

the satellite observations, and less sensitive to the prior, ensuring the CCI SSTs are 

maximally independent of in situ observations (which typically inform the prior SST). In this 

case, 𝑺&′ is used in the retrieval, but the uncertainty equations above use the best estimate 

of the prior error covariance, 𝑺& and are thus unchanged from the above expressions. 
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