Downscaling MODIS nighttime land surface temperatures in urban areas using ASTER thermal data through local linear forest

CHEOLHEE YOO ^{1,2}; cheolhee.yoo@polyu.edu.hk Jungho Im ¹, Dongjin Cho¹, Yeonsu Lee¹, Dukwon Bae², Panagiotis Sismanidis ³

¹ UNIST (Ulsan National Institute of Science & Technology), Republic of Korea (South Korea) ² The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong ³ Ruhr-Universität Bochum, GERMANY

Motivation

Urban areas retain heat at night, but vegetation cools off faster. Nighttime shows clear evidence of positive UHI irrespective of climatic region and seasonal variation. However, few sensor provide high resolution nighttime thermal data (ASTER does, but irregular temporal resolution)

Study area

Data

High resolution (250 m) input kernels

l'ILLI

RUB

Acronym	Description	Source			
ALST (°C)	ASTER Land surface temperature	ASTER Level2 LST			
DEM (m)	Elevation	SRTM DEM			
Slope (°)	Slope, steepness of a surface	SRTM DEM			
Road (%)	Road density	OSM road data			
Pop (%)	Population density	GHS-POP			
Built (%)	Built-up area percentage	GHS-BUILT			
DisBWC(m)	Distance from the built-up weighted Center				
Wind (m/s)	10-year averaged wind speed	Global Wind Atlas			

Spatial downscaling effectively produces high spatiotemporal resolution land surface temperature (LST) in urban areas. Although nighttime LST is an essential indicator in urban thermal research, few LST downscaling studies have focused on nighttime in fine resolution.

Rome, Madrid, and Seoul were chosen as the study areas. The three megacities are well-suited to evaluating the robustness of the proposed methodology since they reflect various geographic characteristics and unique urban architectures.

• Study periods: 2017-2020

*GHG: Global Human Settlement population and built-up grids

Target MODIS daily nighttime LST

- MOD11A1 (Terra) LST products
- Daily, 1 km spatial resolution
- 10:30 p.m. local solar time

2. Downscaling and Evaluation

Local Linear Forest

RF is regarded as a useful model for many regression tasks thanks to its relatively high performance and low sensitivity to the parameters. However, RF cannot extrapolate target values outside the range of the training data. LLF leverages the strengths of RF and local linear regression to improve performance

Methods

Clear-sky ALSTs : 22 for Rome, 18 for Madrid and 5 for Seoul

1. ALST Kernel selection

18 March 2017 in Seoul

S2

S1

12°30'0"E

Mean annual surface

temperature (Year 2017-2020)

12°20'0"E

S3

Applicability for urban climate monitoring

Correlation between 250m mean annual LST and each auxiliary variable oefficient (r) Rome Madrid Seoul ပိ Correlation DEM Road

Surface urban heat island (SUHI) intensity comparison using LCZ

	SUHI		Rome			Madrid			Seoul	
	LCZ	1km	250m	diff	1km	250m	diff	1km	250m	diff
Г	Compact midrise	3.04	3.53	0.49	2.61	2.89	0.28	3.14	3.29	0.15
be	Compact low rise							2.74	2.90	0.16
-ty	Open high rise							2.24	2.47	0.23
bar	Open midrise	1.56	1.85	0.28	1.93	2.36	0.43	1.65	1.69	0.05
<u>ה</u>	Open low rise	0.65	0.70	0.04	0.86	1.10	0.24	1.18	1.14	-0.04
	Large low rise	1.10	1.37	0.26	1.04	1.16	0.11	1.12	1.21	0.09
a	Dense tree	0.82	0.78	-0.04				0.59	0.55	-0.04
atui	Scattered tree	0.17	0.10	-0.06	0.01	0.00	-0.01	0.39	0.34	-0.04
ž	Bush, Scrub				0.06	-0.02	-0.08			

 $UHI_{LCZX} = Temperature_{LCZX} - Temperature_{LCZD}$

Conclusion

This study presented a new nighttime LST downscaling method in which 250 m LSTs are generated from 1 km MODIS nighttime LST. Scheme 3 using LLF model predicted LST much better than other schemes especially for both extremes. Selected ALST kernels of the target date played a crucial role in producing accurate nighttime DLST. Downscaled LST showed larger UHI intensity on urban surfaces than 1 km MODIS LST.

Yoo, C., Im, J., Cho, D., Lee, Y., Bae, D., & Sismanidis, P. (2022). Downscaling MODIS nighttime land surface temperatures in urban areas using ASTER thermal data through local linear forest. International Journal of Applied Earth Observation and Geoinformation, 110, 102827.