ESA CCI+ Phase 2 – Land

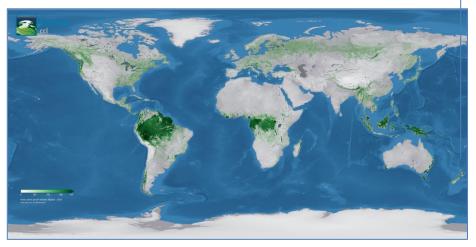
Shaun Quegan, Emilio Chuvieco, Pierre Defourny, Lorenzo Bruzzone, Jean-Francois Cretaux, Darren Ghent, Wouter Dorigo, Christiaan van der Tol

Colocation Meeting - 26 October 2022

→ THE EUROPEAN SPACE AGENCY

Biomass

Science Objectives

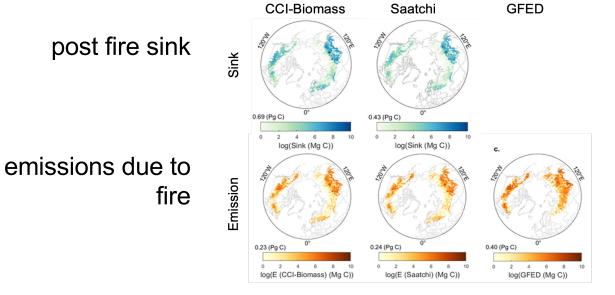

Measuring forest biomass and its changes

- exploiting in carbon and climate models
- supporting national reporting to UNFCCC

Production of AGB products with associated standard error:

- For epochs 2005/7, 2010, 2015/6, annually for 2017-2022, ensuring consistency.
- With development of algorithms for change products between these epochs together with uncertainty.

AGB at 100m resolution for 2018



CEOS-led harmonisation of multiple AGB maps

- Open science activity on ESA/NASA Multimission Algorithm Analysis Platform
- Prototype presented at COP26

User exploitation in carbon modelling

 comparison of carbon emissions and subsequent sink due to fire in the boreal region from 1985-2020 (CCI left, Saatchi AGB middle, GFED right)

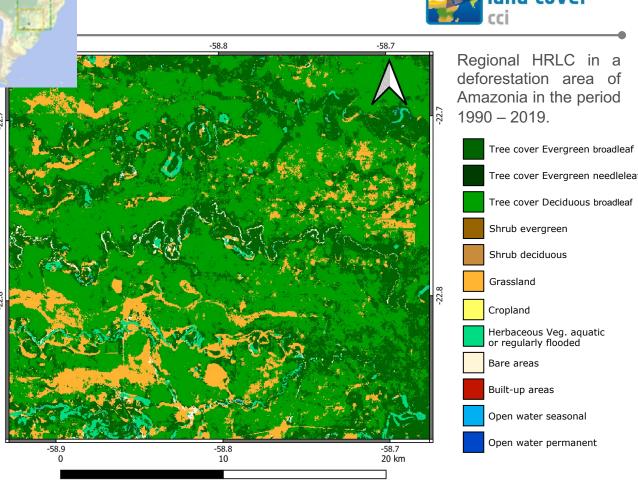
Land Cover

- CCI+ aims to
 - Develop a brand new PFTs time series for climate models matching new GCOS requirements
 - Integrate all existing high resolution global LC data harmonized thanks to MRLC time series
 - Enhance the awareness of MRLC users community
 - **Key Outcomes**
 - New 29-year time series of annual Plant Functional Type (PFT) fraction maps (pixel quantification at 10-30 m describing each 300m cell) and model impact assessment
 - End-to-end uncertainty budget at pixel level (from L0 data to land class level) using S3 time series
 - Assessment of LC impact on LST in the context of urban area heat island mapping using VHR LC
 - Roadmap towards harmonization of land ECVs

land cover 0 - 10 10 - 20 20 - 30 30 -40 - 5 % grass % water <= 0 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 Cover fractions (0-100%) broadleaved needleleaved broadleaved needleleaved **4 ABIOTIC PFTs** inland water. permanent snow & ice, bare soil, built

4 TREE PFTs deciduous/evergreen, deciduous/evergreen **4 SHRUB PFTs** deciduous/evergreen, deciduous/evergreen

2 GRASS PFTs natural, managed (herbaceous crops)


HR Land Cover

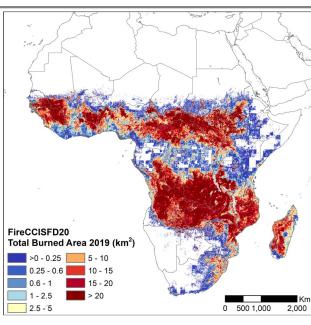
Main Science questions

- Understand the role of land cover spatial resolution in climate modeling and research..
- Studying LCC in key regions exposed to extreme climate conditions or characterized by significant climate changes over the last decades.
- Understanding classification variability across spatio-temporal scales.

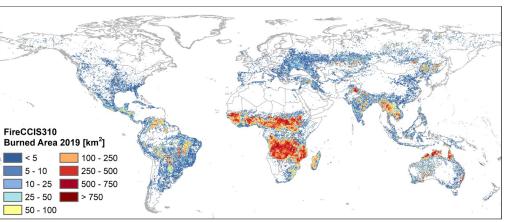
Products:

- Generate reliable regional products at high spatial resolution.
- A static HRLC map at 10m for 2019 at subcontinental level as reference static input to the climate models.
- A time series of regional HRLC maps at 30m in the sub-regions every 5 years (2019 and 1990).
- The change information at 30 m on a yearly scale. Use cases:
- Siberia: Impacts of CC on northern displacement of the forestshrubs-grasslands-transition zone, fate of permafrost carbon.
- Amazon: Impacts of deforestation, fires, agricultural expansion on water and carbon cycles changes.
- Africa: Impacts of CC on drought/flood events, West Africa and Indian Monsoon dynamics, mitigation studies (e.g., Green Belt).

ah resolution


R&D topics:

- Design machine learning methods dealing with both nowadays large data volumes and sparse historical data.
- Guarantee temporal, seasonality and change coherence in time.
- Establish validation and intercomparison paradigms for HRLC.
- Update climate models to absorb HR products.


Fire

- CCI+ aims to understand better fire trends and impacts by comparing coarse (MODIS -S3) and fine (S2) resolution burned area products.
- In addition, global BA algorithms are adapted to S3 SYN data and active forest from VIIRS and S3.
- Historical BA will be retrieved from Landsat-S2 data in three sites (coincident with HRLC CCI). Relations with land cover change (particularly deforestation and degradation).
- Merging of existing global BA products will be carried out to obtain a user-oriented single BA dataset.

Burned area in 2019 from S-2 (Chuvieco et al., 2022, STOTEN)

First Burned area product from S-3 SYN data and VIIRS active fires (2019): Lizundia-Loiola et al., 2022, RSE

80% more BA than FireCCI51 (based on MODIS 250 m) 120% more BA than NASA MCD64A1 (based on MODIS 500 m)

Product	OE	CE	DC
	[%]	[%]	[%]
FireCCISFD20	8.5	15.0	87.7
MCD64C6	56.5	21.1	56.0
FireCCI51	52.2	25.1	58.4

Significantly better accuracy than existing global BA products

Vegetation

FastOpt UNIVERSITY OF TWENTE. 0

Imperial College

London

Goal: Long term, multi sensor product of FAPAR (-> plant productivity) and LAI (-> foliage density)

Application: for climate reanalysis, phenology, improving LSMs, study of extremes

When: March 2022- Febr 2025

Key questions

- Less sensor dependence -> consistency
- More direct link with photosynthesis
- Temporal resolution good enough to detect anomalies, seasonal phenology?

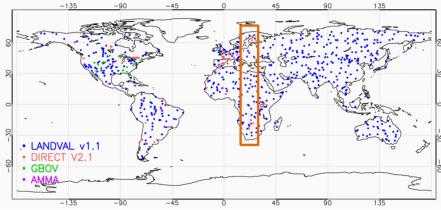
Cycle 1 (2022-2023)

- Full 4-strm RT inversion versus albedo-TIP?
- Uncertainty budget from TOA -> product (error matrices)
- Inclusion of soil, snow residual cloud in inversion

Cycles 2 & 3 (2023-2025):

- Progressive increase in # sensors
- science application:
 - phenology
 - test use in land surface models
 - synergy with SIF and stress indicators (formaldehyde), ...

Name	Cycle	Resolution	Sensors	ROI	Period
TDS-1	1- 3/23	1000 m	SPOT4/5-VGT1/2, PROBA-V, Sentinel-3 OLCI	Selected sites	2019
CRDP-1	1 2/23	1000 m	SPOT4/5-VGT1/2, PROBA-V, Sentinel-3 OLCI	Selected sites + transect	2000-2020
CRDP-2	2 3/24	1000 m	SPOT4/5-VGT1/2, PROBA-V, Sentinel-3 OLCI, Metop-A/B/C-AVHRR, VIIRS	Selected sites + transect	2007-2020
TDS-2	2 3/34	300 m	(1) Terra/Aqua-MODIS, Envisat-MERIS (2) Terra/Aqua-MODIS, PROBA-V, Sentinel-3 OLCI	Selected sites + transect	1 year
CRDP-3	3 3/25	1000 m	Selected from: SPOT4/5-VGT1/2, PROBA-V, Sentinel-3 OLCI, Metop-A/B/C-AVHRR, VIIRS	Global (*)	2000-2020
CRDP-4	3 3/25	300 m	Selected sensors from: Terra/Aqua-MODIS, Envisat-MERIS, PROBA-V, Sentinel-3 OLCI	Global (*)	2000-2020


HYGEOS

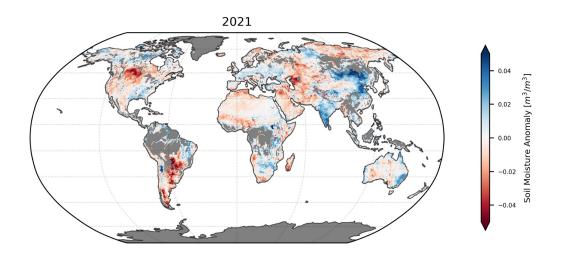
University of Antwerp

of Antwerp

Potential lines (Cycles 2-3) Green FAPAR?

Pigments? **TROPOSIF?**

Soil Moisture


At CCI+ Phase 2, we aim to respond to the needs of the climate modelling community, by: 1) providing fully model independent and gap-free data 2) improving the uncertainty estimate on SM 3) verifying the long-term trends of our products

R&D topics in CCI+ Phase 2

- Seasonal adaptation of Triple Collocation theory (error characterisation)
- Algorithmic uncertainty characterisation
- Filtering of brightness temperature outliers in input data
- Model independency. Merging of (L-band) brightness temperature datasets in one rescaling reference
- Trends in products and agreement with reanalysis

Upcoming CCI+ Phase 2 products:

- Continued: ACTIVE, COMBINED (break-adjusted), PASSIVE (v08.1, April 2023; v09.1, April 2024)
- New: Gap-filled COMBINED (v08.1, April 2023)
- New: L-band rescaled COMBINED (v08.1, April 2023)
- New: Fully model-independent COMBINED (v09.1, April 2024)
- New: 0.1° resolution PASSIVE, ACTIVE (v09.1, April 2024)

Use Cases

- SM uncertainty from CCI SM will be used in SM assimilation in Land Surface Models
- An across scales study will be performed to assess the ability of data sets with different spatial resolutions (CCI SM 0.25°, 0.1° interpolated products, high resolutions 1 km products) to detect extreme events possibly related to climate impacts

Main science aims in CCI+ Phase 2

- Meeting the new ECV GCOS requirements in the 2022 IP
- Improving the long-term stability of our products, particularly for our multi-sensor CDRs
- Increase interaction on cross-ECV activities, and with climate services

R&D topics in CCI+ Phase 2

- Intercalibration of level-1 data for CDRs
- Time difference corrections for multi-mission CDRs
- Consistency across all LST ECV Products for retrievals, uncertainties, and coefficient generation
- Developing first climate quality LST at high spatial resolution (<100m)
- Optimisation of best cloud clearing detection across new sensors
- Development of first climate IST product over sea-ice

Upcoming CCI+ Phase 2 products:

- Extensions of existing products to end 2023 (ATSRs, SLSTRs, MODIS, SEVIRI, GOES, SSM/S & SSMIS
- Long-term time series from AVHRRs from the 1980s to present
- Global LST CDR from ATSR through to SLSTR with length of 28 years
- Time series from AMSR-E and AMSR-2 with length of over 21 years
- New products for Himawari and VIIRS

Use Cases

- Investigate the feasibility of a satellite moderate temperature extremes data set to supplement the HadEX3 dataset
- Impact of ESA LST_cci IST products on the Arctic Copernicus Marine Service (CMEMS) SST/IST product
- Investigating the diurnal heating and cooling of cities, using LST data retrieved from high resolution IR sensors
- Comparison between LST and reanalysis 'skin' temperature time series

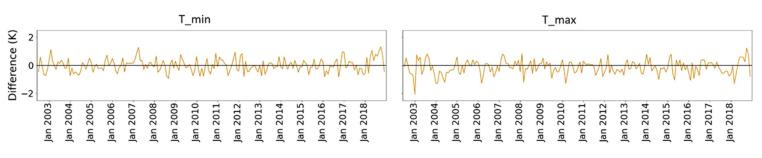


Figure: LST_cci anomalies for Aqua-MODIS compared with homogenised near-surface air temperature anomalies

Main Science questions in phase-2

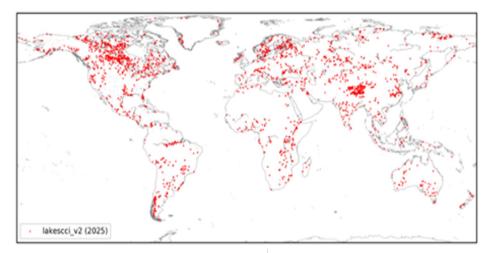
Improve ECV uncertainty assessments vs new GCOS requirements

Enhance interaction with climate research / limnology / cross-ECV activities

Assess potential for Coloured Dissolved Organic Matter, Lake Volume Change, light extinction

R&D topics

Application of new methodologies for Ice Thickness and Water Level Sentinel Lakes of Sub-Sahelian Africa


Computing efficiency of Lake Colour processing (sustainability)

Product updates:

Expand the time series, keeping the same lakes Condense Lake Colour variables for time series consistency Introduce Lake Ice Thickness for a subset of lakes Improve data access for single lakes/regions Additional quality/confidence flags

Use cases

- 1)Heatwave and storm event impact on lakes
- 2)Water quantity in relation to water quality in a changing environment
- 3) Aggregate climate indicators for the global lakes dataset (link to policy)

2024 lakes (2000-2022) 2023: V2.1.0 2025: V3.0.0