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Summary 

This document presents the technical basis of the algorithms used to generate the Fire_cci 

Burned Area product v5.1, based on MODIS 250m data. The document analyses the input 

requirements and the process to create the product, including the stages of the processor 

to get the burned area data and the formatting of the data to obtain the released product. 

 

 Affiliation/Function Name Date 

Prepared 

 

UAH 

 

BC 

UCL 

Joshua Lizundia Loiola 

M. Lucrecia Pettinari 

Emilio Chuvieco 

Thomas Storm 

José Gómez-Dans 

12/11/2018 

Reviewed  UAH – Project Manager Lucrecia Pettinari 20/11/2018 
Authorized UAH - Science Leader Emilio Chuvieco 20/11/2018 

This document is not signed. It is provided as an electronic copy.  
 

 

Document Status Sheet 

Issue Date Details 
1.0 20/03/2018 First issue of the document. 

1.1 11/06/2018 Addressing comments of ESA-CCI-FIRE-EOPS-MEM-18-0135 

2.0 20/11/2018 Update to cover FireCCI51 

 

Document Change Record 

Issue Date Request Location Details 

1.1 11/06/2018 ESA  

Sections 2.1, 2.2.2, 2.2.4, 2.3.2, 

2.5, 2.5.1, 2.5.3, 2.6 

Minor changes in the text to 

improve the explanations. 

Figures 6, 10, 14 Title expanded 

Figures 17, 22 Figure updated 

2.0 20/11/2018 UAH 

Sections 1, 2.2.3, 2.3.1, 2.7 Minor updates to the text 

Section 2.1, 2.3.2, 3.2.3, 2.4.2, 

2.4.3, 2.5 (and sub-sections), 2.6 

Text updated 

Section 2.3.5 Section removed 

  



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 4 

 

Table of Contents 

1. Introduction .............................................................................................................. 8 

2. BA Algorithm description ........................................................................................ 8 

2.1. General scheme ...................................................................................................... 8 

2.2. Algorithm inputs .................................................................................................... 9 

2.2.1. Surface Reflectance ...................................................................................... 9 

2.2.2. Quality flags ............................................................................................... 11 

2.2.3. Hotspots ...................................................................................................... 12 

2.2.4. Land cover .................................................................................................. 12 

2.3. Composites .......................................................................................................... 14 

2.3.1. Reasons for compositing ............................................................................ 14 

2.3.2. Compositing procedure .............................................................................. 15 

2.3.3. Relative NIR drop ...................................................................................... 18 

2.3.4. Voronoi polygon exceptions ...................................................................... 19 

2.4. Seed phase ........................................................................................................... 20 

2.4.1. Positioning of hotspots ............................................................................... 20 

2.4.2. Potential active fires selection .................................................................... 20 

2.4.3. Thresholding ............................................................................................... 21 

2.4.3.1. Spatio-temporal HS clusters ................................................................. 22 

2.4.3.2. Spatial HS clusters ................................................................................ 23 

2.4.3.3. Regional HS clusters ............................................................................ 24 

2.5. Growing phase ..................................................................................................... 24 

2.5.1. Growing method ......................................................................................... 25 

2.5.2. Spatial filter ................................................................................................ 25 

2.6. Uncertainty .......................................................................................................... 26 

2.7. Date of first detection .......................................................................................... 29 

3. Formatting MODIS-based BA data to PSD-compliant products ...................... 29 

3.1. Pixel product ........................................................................................................ 30 

3.1.1. Binning ....................................................................................................... 30 

3.1.2. The ModisJDAggregator ............................................................................ 31 

3.1.3. Finalisation ................................................................................................. 31 

3.2. Grid product ......................................................................................................... 32 

3.2.1. Sum of burned area .................................................................................... 32 

3.2.2. Standard error ............................................................................................. 33 

3.2.3. Fraction of burnable area ............................................................................ 33 

3.2.4. Fraction of observed area ........................................................................... 34 

3.2.5. Number of patches ..................................................................................... 34 

3.2.6. Sum of BA of each LC class ...................................................................... 35 

4. References ............................................................................................................... 35 

Annex 1: Acronyms and abbreviations ....................................................................... 37 



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 5 

 

Annex 2: Analysis of metrics for spatio-temporal HS clusters .................................. 38 

Annex 3: Aggregation of the MODIS BA confidence level to the grid product ...... 39 

A3.1. Aggregation basics ........................................................................................ 39 

A3.2. Unreliable probability of burn estimates ....................................................... 42 

 

List of Tables 

Table 1: Science data set of the MOD09GQ product, extracted from Table 3 of Vermote 

et al. (2015). ............................................................................................................ 10 

Table 2: Bit structure of the quality flags of MOD09GA. For further information, refer to 

Vermote et al. (2015) .............................................................................................. 11 

Table 3: Reclassification of the land cover extracted from LC_cci into 4 general classes

 ................................................................................................................................ 13 

Table 4: Commission error (Ce), omission error (Oe) and Dice Coefficient (DC) of 

different metric combinations. B refers to burned and U to unburned. .................. 38 

  

List of Figures 

Figure 1: Algorithm main scheme definition ................................................................... 9 

Figure 2: MODIS Sinusoidal Grid, as shown in Vermote et al. (2015). ........................ 10 

Figure 3: Images corresponding to a zone of tile h30v10 (Australia) of January 6, 2008. 

(a) NIR reflectance, where the clouds appear white. (b) QA of MOD09GA. ........ 11 

Figure 4: Example of June 2008 for tile h30v10. (a) Composite (see Section 2.3) without 

QA correction. (b) Composite with QA applied to the images that create it. The red 

dots are the hotspots for that period. The QA eliminates the dark pixels in the middle 

of the image that correspond to cloud shadows and not burned area. .................... 12 

Figure 5: (a) land cover classes of the LC_cci. (b) Reclassified land cover, with the 

following colours: 0: black; 1: orange. ................................................................... 13 

Figure 6: NIR reflectance (Y axis) for a burned and unburned pixel of tile h08v05 

(California) during 2008 (days of the year in X axis) after applying state mask. The 

continuous oscillation of the reflectance is due to the BRDF effect. ..................... 14 

Figure 7: NIR reflectance (Y axis) for the same pixels of Figure 6, as function of the 

month of the year 2008 (X axis). The smoothing of the BRDF effect due to the 

composite does not obscure the NIR drop used to detect a burned area (shown in the 

red line, for a fire occurred in day 169: 17 June 2008). ......................................... 15 

Figure 8: Example of Voronoi polygons created for June 2008 in tile h30v10. (a) Hotspots 

during that month, including a 50-km buffer. (b) Voronoi polygons with their 

corresponding date. ................................................................................................. 16 

Figure 9: Example of temporal window used for June 2008 by the FireCCI50 (top) and 

the FireCCI51 (bottom). The day of the year (DoY) of each month is shown at the 

top. Each line corresponds to a pixel with a hotspot in the day indicated in bold, and 

the period marked in green indicates the days when the three minimum NIRs are 

searched. The vertical line before the day shows the break between the pre and post 

days. The new algorithm FireCCI51 only adds 10 extra post days (yellow) in case 

three or less valid observations are found in the first 10 post days (green). Another 



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 6 

 

5 post days are added if this situation persists. The temporal windows of the new 

algorithm are more stable than in the old one. ....................................................... 16 

Figure 10: Composite of June 2008 for the tile h30v10 (Australia). This composite has no 

“incomplete fires” or “eliminate noise” corrections mentioned in this section. .... 17 

Figure 11: Composite example of November 2008 for tile h30v10. (a) The red areas are 

the fire perimeters of November 2008 extracted from the North Australian Fire 

Information (NAFI) database. (b) Original composite without the correction. (c) 

Corrected composite, where the burned area is more clearly identified. ............... 18 

Figure 12: Detail of the composite of June 2008 for the tile h30v10. The left image shows 

the original composite without the noise correction. The right image shows the 

composite after the correction. There are no HS in this area during this time period, 

which shows that the black areas in the left image are due to shadows. ................ 18 

Figure 13: Detail of the GEMI difference (a) and RelΔNIR (b) of June 2008 for the tile 

h30v10 (Australia). The HS are coloured in green. ................................................ 19 

Figure 14: (a) 5x5 pixel window around the pixel where the hotspot is located (blue dot), 

showing the NIR values in the composite, from higher (brighter) to lower (darker) 

values. (b) The red pixel is the one assigned to the HS since it has the lowest NIR 

value of the window. .............................................................................................. 20 

Figure 15: Example of tile h19v10 (Angola) for July 2008, showing the NIR reflectance 

contrast between two land covers: A represents an area of deciduous broadleaved 

forest (LC code 60 and 62) and B represents a grassland fire (LC code 130). Both 

images show the NIR composite coloured with the same grey scale. The top image 

shows the LC_cci corresponding to year 2008. ...................................................... 22 

Figure 16: Example of  the thresholding process in h30v10 (North Australia) of July 2008. 

In the image on the left spatio-temporal clusters have been coloured and on the right 

those STC have been merged in spatial clusters (SC). ........................................... 23 

Figure 17: Example of tile h19v10 (Angola) for September 2008. On the left LC_cci of 

2008 and on the right burned patches coloured by their final threshold used in the 

growing phase. The contrast between different spectral regions is clear and also the 

relationship with the LC. ........................................................................................ 24 

Figure 18: Example of the growing procedure. (a) The orange pixels are the seeds, and 

the green pixels correspond to the burned area to be detected. (b) The numbers in the 

green pixels show the iteration in which they were detected. ................................ 25 

Figure 19: Example of the application of the “breaking bridges” filter to a burned patch 

in the Northern border of tile h08v05 (California) in June 2008. (a) Burned patch 

without the filter. (b) Burned patch after the filter. Red colour shows the FRAP 

perimeters, black the unburned pixels and grey the commission errors. ................ 26 

Figure 20: Number of post-fire valid observations of an area of the tile h30v10 (Australia) 

for June 2008. ......................................................................................................... 27 

Figure 21: Probability of burn variable related to the NIR reflectance of an area of the tile 

h30v10 (Australia) for June 2008. The lower the value, the higher the probability of 

the pixel being burned. ........................................................................................... 27 

Figure 22: Probability of burn variable related to the RelΔNIR values of an area of the 

tile h30v10 (Australia) for June 2008. The higher the value, the higher the probability 

of the pixel being burned. ....................................................................................... 27 



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 7 

 

Figure 23: Probability of burn variable related to the distance to the PAF of an area of the 

tile h30v10 (Australia) for June 2008. The lower the value, the higher the probability 

of the pixel being burned. ....................................................................................... 28 

Figure 24: Uncertainty of an area of the tile h30v10 (Australia) for June 2008. The values 

represent the probability of each pixel being burned. ............................................ 29 

Figure 25: (a) Dates of detection of an area of tile h30v10 (North Australia) of July 2008. 

(b) Dates of detection of an area of tile h19v10 (Angola) of September 2008. ..... 29 

Figure 26: Calvalus L3 processing ................................................................................. 30 

Figure 27: The Poisson binomial PDF (green line) derived from a simulated set of 

independent samples (300, 100 with probabilities between 0.7 and 0.9, 100 with 

probabilities between 0.2-0.3 and 100 with probabilities between 0-0.1). A Gaussian 

approximation (red line) derived from calculating the mean (~110) and standard 

deviation (~39) is also shown. Skewness was ~0.01. ............................................. 41 

Figure 28: Example of aggregation. See text for more details. ...................................... 41 

Figure 29: Example of applying the rescale approach to the example shown in Figure 28.

 ................................................................................................................................ 42 

 

  



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 8 

 

1. Introduction 

The ESA Climate Change Initiative (CCI) stresses the importance of providing a higher 

scientific visibility to data acquired by ESA sensors, especially in the context of the IPCC 

reports. This implies producing consistent time series of accurate Essential Climate 

Variable (ECV) products, which can be used by the climate, atmospheric and ecosystem 

scientists for their modelling efforts. The importance of keeping long-term observations 

and the international links with other agencies currently generating ECV data is also 

stressed. 

Fire is one of the ECVs due to its importance in emissions calculation and their 

consequence at social, economic and environmental levels. The Fire disturbance ECV 

identifies burned area (BA) as the primary fire variable. Accordingly, the Fire_cci project 

shall focus on developing and validating algorithms to meet GCOS ECV requirements 

for (consistent, stable, error-characterised) global satellite data products from multi-

sensor data archives.  

The first algorithm developed within the project used images from the MERIS sensor 

(Alonso-Canas and Chuvieco 2015). Because of the availability of images from this 

sensor, the time series of the MERIS Fire_cci v4.1 (FireCCI41) product only covers the 

years 2005-2011 (Chuvieco et al., 2016). However, a new algorithm based on the MODIS 

sensor (MODIS Fire_cci v5.0 or FireCCI50) extended that time series to the period 2001-

2016 (Chuvieco et al., 2018). The algorithm was developed for the two highest-spatial 

resolution bands of the MODIS sensor (Red and Near Infrared, NIR) and followed a 

similar approach to the MERIS algorithm, as it combined information from hotspots and 

temporal reflectance changes to detect the burned pixels. Differences in the characteristics 

of both sensors and their derived products (spatial and temporal resolution, view angles, 

bands characteristics, etc.) and problems found with FireCCI41 product advised to extend 

previous developments and introduce some adaptations for that MODIS BA algorithm.  

Nevertheless, posterior analysis of the products showed that some issues related to the 

input variables and thresholding approach could be significantly improved. This 

document explains the theoretical basis of the improved global burned area (BA) 

algorithm MODIS Fire_cci v5.1 (FireCCI51), which make use of all the knowledge 

acquired through the years within the Fire_cci project. 

2. BA Algorithm description  

2.1. General scheme 

Following our previous experience (Alonso-Canas and Chuvieco, 2015; Chuvieco et al., 

2018) and well-known BA products (Giglio et al., 2009), we considered the hybrid 

approach the most effective for global BA detection. Consequently, active fire detections 

(hotspots, HS) and post fire reflectance information were combined. Using both thermal 

and reflectance information, BA are detected more unambiguously, as the thermal 

characterisation allows detecting active fires while final burned patches have a longer 

impact on post-fire reflectances.  

Following the scheme used for the FireCCI50 BA algorithm (Lizundia-Loiola et al., 2018; 

Chuvieco et al., 2018), the general scheme of the FireCCI51 algorithm follows a two-

phase approach (seed and growing phases). The former aims to detect the most clearly 

burned pixels, while the latter tries to reduce omission errors using contextual analysis. 
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The algorithm is also based on temporal composites, using the date of the HS and distance 

operators to create monthly syntheses of daily data. Finally, A fuel mask, based on the 

LC_cci product, was used to mask out non burnable areas and to reduce some potential 

confusion of BA with other land cover (LC) categories.  

The general scheme of the algorithm is shown in Figure 1. MODIS NIR information is 

combined with HS and auxiliary data to obtain monthly composites. Once the composites 

are obtained the relative NIR difference is calculated between two consecutive months. 

These two variables are the basis to perform the seed identification phase, but also the 

growing phase, which is performed on the composite and NIR difference images to obtain 

the BA maps.  

 

 

Figure 1: Algorithm main scheme definition 

2.2. Algorithm inputs 

2.2.1. Surface Reflectance 

The objective of the algorithm is to create a BA product at a 250m spatial resolution, and 

for this reason the main source of data is the daily MOD09GQ Collection 6 product 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09gq_v006 

last accessed September 2018), which offers surface reflectance information in the red 

(R) and Near Infrared (NIR) bands. A summary of the characteristics of the product is 

shown in Table 1. 

  

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09gq_v006


 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 10 

 

Table 1: Science data set of the MOD09GQ product, extracted from Table 3 of Vermote et al. (2015). 

Science Data Sets 

(HDF Layers) 
Units 

Data 

Type 

Fill 

Value 
Valid Range 

Scale 

Factor 

num_observations: number 

of observations 

within a pixel 

none 

8-bit 

signed 

integer 

-1 0-127 NA 

sur_refl_b01_1: 250m 

Surface Reflectance 

Band 1 (620-670 nm) 

Reflectance 

16-bit 

signed 

integer 

-28672 -100 - 16000 0.0001 

sur_refl_b02_1: 250m 

Surface Reflectance 

Band 2 (841-876 nm) 

Reflectance 

16-bit 

signed 

integer 

-28672 -100 - 16000 0.0001 

QC_250m_1: 250m 

Reflectance Band Quality 
Bit Field 

16-bit 

unsigned 

integer 

2995 0 - 4096 NA 

obscov_1: Observation 

Coverage (percentage of 

the grid cell area covered 

by the observation) 

Percent 

8-bit 

signed 

integer 

-1 0 - 100 0.01 

iobs_res_1 none 

8-bit 

unsigned 

integer 

255 0 - 254 NA 

orbit_pnt_1 none 

8-bit 

signed 

integer 

-1 0 - 15 NA 

granule_pnt_1 none 

8-bit 

unsigned 

integer 

255 0 - 254 NA 

 

The unit of analysis of the MODIS products is the standard tile (1200 x 1200 km) in 

sinusoidal coordinates in which they are delivered (Figure 2). All other input data has 

been reprojected to this coordinate system, if necessary, prior to processing. 

 

Figure 2: MODIS Sinusoidal Grid, as shown in Vermote et al. (2015). 
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2.2.2. Quality flags 

Complementary to the surface reflectance product, the daily MOD09GA Collection 6 

product is also used (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_ 

products_table/mod09ga_v006 accessed September 2018), which in Band 2 

(state_1km_1: Reflectance Data State) contains the State Quality Assessment Description 

(QA) that offers information of the state of each pixel at a 1000m spatial resolution. Even 

though the use of this product at this coarser resolution might introduce some errors, the 

Band Quality Description of the GQ product (band 4, QC_250m_1: 250 m Reflectance 

Band Quality), which gives information related to issues like detectors quality, 

atmospheric correction quality and pixel saturation (Table 8 of Vermote et al. 2015), did 

not include sufficient information to perform an adequate masking of the daily images 

(see Figure 3), and hence it was decided to use the GA product’s QA flags. 

The QAs offer information stored in integer numbers ranging from 0 to 65535 (being this 

last number the NoData code), which translated to their binary expression offer in 16 bits 

the information on the quality of each pixel (Table 2).  

Table 2: Bit structure of the quality flags of MOD09GA. For further information, refer to Vermote et al. 

(2015) 

Bit position Description Bit position Description 

0 
Cloud state 

8 
Cirrus detected 

1 9 

2 Cloud shadow 10 Internal cloud algorithm flag 

3 

Land/water flag 

11 Internal fire algorithm flag 

4 12 MOD35 snow/ice flag 

5 13 Pixel is adjacent to cloud 

6 
Aerosol quantity 

14 Salt Pan 

7 15 Internal snow mask 

 

     

             (a)           (b) 

Figure 3: Images corresponding to a zone of tile h30v10 (Australia) of January 6, 2008. (a) NIR 

reflectance, where the clouds appear white. (b) QA of MOD09GA. 

The use of these QAs is necessary to avoid further problems in the BA classification, such 

as cloud or cloud shadows or poor observations. The impact of cloud shadows can be 

observed in Figure 4. The quality flags were used to eliminate clouds and cloud shadows. 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09ga_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09ga_v006
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Information of bits 0, 1, 2 and 10 of Table 2 was masked in the input images, keeping the 

rest of the values as valid. 

 
(a)                 (b) 

Figure 4: Example of June 2008 for tile h30v10. (a) Composite (see Section 2.3) without QA correction. 

(b) Composite with QA applied to the images that create it. The red dots are the hotspots for that period. 

The QA eliminates the dark pixels in the middle of the image that correspond to cloud shadows and not 

burned area. 

2.2.3. Hotspots 

The HS information was derived from the MCD14ML Collection 6 product, which 

improves the detection of active fires from C5. This may increase the commission errors 

due to possible occurrence of hotspots caused by small fires (undetectable at our 

resolution) in isolated pixels whose statistics introduce noise in the analysis, but it also 

may decrease the omission ones (Giglio et al. 2016). This product provides global 

monthly information of HS since 2001, covering the entire MODIS time series. 

The MCD14ML product has a layer that specifies the presumed origin of the fire: 0 – 

presumed vegetation fire; 1 – active volcano; 2 – other static land source; 3 – offshore. 

Of these categories, only the HS classified as 0 have been used in the algorithm. 

2.2.4. Land cover 

The last product used is the Land Cover CCI product (LC_cci, ESA, 2017), which 

provides information on global land cover. The collection used for this second global 

MODIS BA processing is v2.0.7, containing annual LC information between 1992 and 

2015. As the purpose of this layer is to provide information on the land cover prior to the 

fire, the LC_cci used is the one prior to the BA analysis, i.e. LC_cci 2000 was used for 

the BA calculation of 2001, the LC_cci 2001 for the 2002 BA product, and so on. For 

2017 LC_cci 2015 was used. This version of the LC_cci product allows a better 

characterization of the LC fuel mask used by the FireCCI51 than the previous version, as 

FireCCI50 used the LC_cci v1.6.1.  

The LC_cci product has 37 classes (including no data), which were reclassified into 2 general 

classes to create a burnable mask (see  

Table 3 and Figure 5): 

 0: non burnable 

 1: burnable 
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            (a)              (b) 

Figure 5: (a) land cover classes of the LC_cci. (b) Reclassified land cover, with the following colours: 0: 

black; 1: orange. 

 

Table 3: Reclassification of the land cover extracted from LC_cci into 4 general classes 

Label 
LC_cci 

Value  

Fire_cci 

class 

No Data 0 0 

Cropland, rainfed 10 1 

Herbaceous cover 11 1 

Tree or shrub cover 12 1 

Cropland, irrigated or post‐flooding 20 1 

Mosaic cropland (>50%) / natural vegetation (tree, shrub, 

herbaceous cover) (<50%) 
30 1 

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / 

cropland (<50%) 
40 1 

Tree cover, broadleaved, evergreen, closed to open (>15%) 50 1 

Tree cover, broadleaved, deciduous, closed to open (>15%) 60 1 

Tree cover, broadleaved, deciduous, closed (>40%) 61 1 

Tree cover, broadleaved, deciduous, open (15-40%) 62 1 

Tree cover, needleleaved, evergreen, closed to open (>15%) 70 1 

Tree cover, needleleaved, evergreen, closed (>40%) 71 1 

Tree cover, needleleaved, evergreen, open (15-40%) 72 1 

Tree cover, needleleaved, deciduous, closed to open (>15%) 80 1 

Tree cover, needleleaved, deciduous, closed (>40%) 81 1 

Tree cover, needleleaved, deciduous, open (15-40%) 82 1 

Tree cover, mixed leaf type (broadleaved and needleleaved) 90 1 

Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 100 1 

Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 110 1 
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Label 
LC_cci 

Value  

Fire_cci 

class 

Shrubland 120 1 

Evergreen shrubland 121 1 

Deciduous shrubland 122 1 

Grassland 130 1 

Lichens and mosses 140 1 

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 150 1 

Sparse shrub (<15%) 152 1 

Sparse herbaceous cover (<15%) 153 1 

Tree cover, flooded, fresh or brackish water 160 1 

Tree cover, flooded, saline water 170 1 

Shrub or herbaceous cover, flooded, fresh/saline/brackish water 180 1 

Urban areas 190 0 

Bare areas 200 0 

Consolidated bare areas 201 0 

Unconsolidated bare areas 202 0 

Water bodies 210 0 

Permanent snow and ice 220 0 

2.3. Composites 

2.3.1. Reasons for compositing 

The MODIS images used for the algorithm (see Section 2.2.1) have a noticeable angular 

effect, also called Bi-Directional Reflectance Distribution Function (BRDF), as shown in 

Figure 6. This is due to the wide field of view (FOV) of the sensor (2330 km). Different 

filters were tested to smooth the signal, but these filters also smoothed the reflectance 

drop due to the fires, making them inapplicable.  

 

Figure 6: NIR reflectance (Y axis) for a burned and unburned pixel of tile h08v05 (California) during 

2008 (days of the year in X axis) after applying state mask. The continuous oscillation of the reflectance 

is due to the BRDF effect. 

As an alternative to the BRDF correction, monthly composites were used. These 

composites allow smoothing the BRDF effect and emphasize at the same time the 

reflectance drop due to the fire (Figure 7).  
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Figure 7: NIR reflectance (Y axis) for the same pixels of Figure 6, as function of the month of the year 

2008 (X axis). The smoothing of the BRDF effect due to the composite does not obscure the NIR drop used 

to detect a burned area (shown in the red line, for a fire occurred in day 169: 17 June 2008).  

2.3.2. Compositing procedure 

To create the monthly composites, the HS and the daily MOD09GQ images (masked 

using the MOD09GA state QAs and the burnable mask) were used. It is well known that 

HS do not provide a full description of fire-affected areas, as satellite sensors only detect 

those fires that are active when the satellite overpasses the fires. However, the high 

thermal contrast between burning and background pixels and the sensitivity of MODIS 

thermal channels ensure a high confidence in detecting authentic fires, avoiding 

commission errors. Hantson et al. (2013) performed an exploratory analysis of HS 

performance to detect burned perimeters by comparing HS with fire reference data 

extracted from Landsat TM/ETM+. Commission errors found were very low (<3 %) for 

all study sites, but omission errors (burned patches undetected) were relatively high 

(>25%) particularly for small BA patches. The HS were used to establish the most 

appropriate date for the post-fire temporal compositing. The technique of using HS for 

labelling fire dates has been proposed by other authors (Boschetti et al. 2010). 

Since the unit of processing is the standard MODIS tile, the global HS product was cut 

using the extension of the tile. To account for fires occurring in the boundary between 

two tiles, a 50-km buffer was added to each tile to avoid boundary effects, and to improve 

the continuity between tiles. Using the hotspots corresponding to the tile and the month 

being processed, Voronoi polygons (Iri et al. 1984) were created to assign to each pixel 

the date of the closest HS (CHSD). The rationale for this was that the closest the date to 

a HS, the better sensitivity the algorithm should have to discriminate the burned signal in 

case a pixel is burned (Figure 8). 

The “likely burned date” (LBD) was used to create the monthly NIR reflectance 

composites by finding the three NIR minima acquired through a moving window around 

the CHSD. Considering the potential noise in the time series (see next paragraphs), as in 

the case of the MERIS algorithm, three NIR minima were used instead of a single NIR 

one. Since HS may occur at the end of the month, the moving window allows a good 

transition between consecutive months, as it includes images from the following month. 

Unlike the FireCCI50 algorithm, where the moving window was only applied for the last 

10 days of the month generating very irregular searching windows through a same region, 

in this case FireCCI51 uses 10 days pre- and 10 days post-fire for all the cases. The 

quantity of post days used by the algorithm could be extended up to 25 days if no more 
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than three valid observations were found in the first 10 days. This is very useful in regions 

where persistent clouds are found (Giglio 2009). In this way, it was assured the use of 

only the necessary images to create the monthly composites or NIRt (Figure 9). 

 
                                      (a)                  (b) 

Figure 8: Example of Voronoi polygons created for June 2008 in tile h30v10. (a) Hotspots during that 

month, including a 50-km buffer. (b) Voronoi polygons with their corresponding date. 

Thanks to the stricter searching window around CHSD, the new MODIS algorithm 

decreases the probability that low NIR values of unburned pixels (floods, shadows, etc.) 

may be selected, while reducing dating errors potentially caused by selecting images from 

the following month. 

Once the three minimum NIR values were selected for each pixel, their dates were 

compared with the CHSD, and the closest post LBD minimum NIR value was selected 

only in cases where at least two minima were found after the CHSD. In the other cases, 

the second minimum NIR was selected instead of the first one, as the latter may be more 

likely to occur from shadows or other artefacts. The pixels that have no valid observations 

during the study period are considered not observed (Figure 10).  

 

 

Figure 9: Example of temporal window used for June 2008 by the FireCCI50 (top) and the FireCCI51 

(bottom). The day of the year (DoY) of each month is shown at the top. Each line corresponds to a pixel 

with a hotspot in the day indicated in bold, and the period marked in green indicates the days when the 

three minimum NIRs are searched. The vertical line before the day shows the break between the pre and 

post days. The new algorithm FireCCI51 only adds 10 extra post days (yellow) in case three or less valid 

observations are found in the first 10 post days (green). Another 5 post days are added if this situation 

persists. The temporal windows of the new algorithm are more stable than in the old one.  
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Figure 10: Composite of June 2008 for the tile h30v10 (Australia). This composite has no “incomplete 

fires” or “eliminate noise” corrections mentioned in this section. 

Some further corrections were applied trying to solve regional errors that were detected 

in the resulting composites. 

 Incomplete fires: it was observed that many burned patches were incomplete, and 

sometimes the closest posterior date of the NIR with respect to the HS proved not 

to be the most adequate value (Figure 11). To solve this, the following rules were 

applied: 

o If the three NIR minima occurred in the 10 days posterior to the HS, the 

first minimum was selected. 

o If two NIR minima (including always the first minimum) occurred in the 

first 5 days posterior to the HS, the first minimum was selected. 

 Eliminate noise: the resulting composites showed in many cases a small group of 

pixels with low NIR, which were unlikely to be burned, as they were not 

associated to HS. To solve this, a compositing rule was added: if the difference of 

reflectance between the second and third minimum was lower than 0.01, and the 

difference between the first and second minimum was higher than 0.05, the first 

minimum was considered to be noise, and the composite used the second 

minimum NIR of the pixel. These thresholds were empirically obtained based on 

temporal trends of a set of pixels. 

   (|Min2 – Min3| < 0.01) & (|Min1 – Min2| > 0.05) use Min2 for composite 

 These cases were found most usually due to shadows, where the first NIR 

minimum was much lower than the second and third ones. With this correction 

most of these anomalies were eliminated (Figure 12). 
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(a)  

(b)  (c) 

Figure 11: Composite example of November 2008 for tile h30v10. (a) The red areas are the fire 

perimeters of November 2008 extracted from the North Australian Fire Information (NAFI) database. (b) 

Original composite without the correction. (c) Corrected composite, where the burned area is more clearly 

identified. 

 

Figure 12: Detail of the composite of June 2008 for the tile h30v10. The left image shows the original 

composite without the noise correction. The right image shows the composite after the correction. There 

are no HS in this area during this time period, which shows that the black areas in the left image are due 

to shadows. 

2.3.3. Relative NIR drop  

One of the main differences between the two MODIS versions is that FireCCI51 uses 

only the NIR band, instead of using also the RED band to compute the Global 
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Environmental Monitoring Index (GEMI). The FireCCI50 used the absolute difference 

between the maximum pre-fire GEMI and the monthly composite GEMI. However, it 

was found that the relative NIR drop (RelΔNIR) between two consecutive composites 

was able to give the same information and, in some cases, a better separability between 

burned and unburned classes (Figure 13). The RelΔNIR expression is:    

𝑅𝑒𝑙∆𝑁𝐼𝑅𝑡 = (1 −
𝑁𝐼𝑅𝑡

𝑁𝐼𝑅𝑡−1
) ∙ 1000 

Being NIRt and NIRt-1 the values of two consecutive NIR composites. As this variable is 

represented by integers the processing and memory issues related to this layer have 

improved. The obtained values show the relative drop in percentage suffered by the pre-fire 

value after the fire event i. e. a RelΔNIR = 232 means that the NIR value decrease in 23.2%. 

 

 
(a)                    (b) 

Figure 13: Detail of the GEMI difference (a) and RelΔNIR (b) of June 2008 for the tile h30v10 

(Australia). The HS are coloured in green. 

2.3.4. Voronoi polygon exceptions 

There were some cases in which the amount of HS prevented the Voronoi polygon 

function from performing correctly. For this reason, the following exceptions were 

included in the algorithm: 

 0 hotspots: when a tile had 0 hotspots in a month, there were two options. One 

would be to not create a composite for that month and use the composite of the 

previous month (NIRt-1) for the analysis of the following month. But with this 

approach the NIR information of the month in study would be lost, which 

provided useful information for the analysis of the following month. For this 

reason, the second option was adopted, which was to assign the entire image a HS 

date of the first day of the month, and calculate the composite accordingly. 

 1 hotspot: all the image was assigned the date of that HS. 

 2 hotspots: in this case there were to possible options: to divide the image in two 

according to HS location and assign to each zone the date of its HS, or to assign 

to the whole image the date of the first HS. It was decided to use the second option 

because only two HS are too few to provide a significant difference between the 

first and second processing options, and it also saved processing time. 
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 Geometric anomalies: these are the situations in which the spatial distribution of 

the HS makes it impossible to create polygons (the HS are in one line, for 

example). In those cases, the procedure of the case with 0 HS was used.   

2.4. Seed phase 

As previously indicated, the seed phase of the algorithm tries to detect those pixels with 

a high confidence of being burned. The bottom line is to minimize commission errors 

(avoiding false detections), while keeping low commission rates. Different steps were 

followed within this phase. 

2.4.1. Positioning of hotspots 

Since the MCD14ML HS had 1 km2 resolution, while the MODIS NIR product had 250m, 

a proper method to locate the active fire within each NIR pixel was needed. For this 

reason, the HS of the MCD14ML product were positioned within the composite by 

selecting the lowest NIR value within a 5x5-pixel window around the HS coordinates. 

(see Figure 14). 

 

      (a)     (b)    

Figure 14: (a) 5x5 pixel window around the pixel where the hotspot is located (blue dot), showing the 

NIR values in the composite, from higher (brighter) to lower (darker) values. (b) The red pixel is the one 

assigned to the HS since it has the lowest NIR value of the window. 

2.4.2. Potential active fires selection 

A threshold value was needed to identify which pixels would be classified as potential 

active fires (PAF). This threshold was obtained using a Cumulative Distribution Function 

(CDF) of the unburned class, which offered information about the distribution of the 

burned and unburned class in the study area. The calculation of thresholds was based on 

deciles. In order to calculate the CDF of the unburned class, the most representative pixels 

of it were selected.  

To select the unburned pixels used for the threshold statistics calculation, a unique 

condition was applied: 

 The pixel did not have a HS in a vicinity of a 10 km (RIN) buffer distance (circular 

raster window). 

This condition was similar to the FireCCI50 algorithm (Chuvieco et al., 2018), but with 

a bigger window. In the previous version there was no additional filtering after this phase, 
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as the thresholding was tile-based, so this first threshold had to be able to discard the 

majority of the false alarms and HS related to fires too small to be detected at our 

resolution. However, this smaller window might generate too restrictive thresholds for 

some land covers, as it did not take into account the internal variability of the tile. So in 

the case of the FireCCI51 the objective of this first filtering was to eliminate the clearest 

cases of false alarms. Besides, the use of circular raster windows instead of a square one 

allowed being more precise in the application of the buffer distances, although the 

sinusoidal projection is not equidistant. The selected distance RIN has been previously 

used by other authors (Giglio et al., 2009 and Giglio et al., 2018). So using the pixels that 

comply with the above criterion, the CDF of the NIR reflectance for unburned pixels was 

created, and the Seed Threshold (TH_S) was established as 10% of the CDF, the same 

used in the previous versions. 

To confirm that a HS is a PAF, the following conditions had to be met: 

 The RelΔNIR > 10% 

 The NIR value of the pixel was lower than TH_S. 

 At least 3 of the 8 neighbouring pixels in a 3x3 window comply with the two 

previous conditions. This last condition performed a contextual analysis, and 

confirmed that the tendency showed by the HS was coherent with the 

neighbouring region. 

The third condition introduced a considerable change between the two versions. In the 

oldest version the number of pixels that had to comply with the conditions were 5 of the 

8 surrounding pixels. However, this stricter condition filtered lots of HS related to small 

fires. So the condition was reduced to three in favour of a reduction of the omission error. 

The 10% relative NIR drop has been empirically established based on low intensity fires 

from African savannah and southern Sahara.  

2.4.3. Thresholding 

Another main change introduced in this new version is the method used to compute the 

thresholds in each tile. The approach used by the FireCCI50 was inherited from 

FireCCI41 which stablished that the tiles of MODIS were a good statistical unit to 

compute thresholds. But the analysis carried out with FireCCI50 showed that in several 

tiles this approach was not performing adequately. Tile h19v10 (Angola) is a clear 

example of that. In this case the northern part is composed of deciduous broadleaved 

forests and the southern part shrublands and grasslands are the main land cover, 

generating two areas with a high contrast in NIR reflectance values within the same tile 

(Figure 15). 

So in FireCCI51 the thresholding process was strictly related to the context of each fire, 

instead of being a unique tile-based threshold. In each of the following three steps the 

initial PAFs were filtered to get the final seeds and a threshold adjusted to each spectrally 

similar region was estimated. 
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Figure 15: Example of tile h19v10 (Angola) for July 2008, showing the NIR reflectance contrast between 

two land covers: A represents an area of deciduous broadleaved forest (LC code 60 and 62) and B 

represents a grassland fire (LC code 130). Both images show the NIR composite coloured with the same 

grey scale. The top image shows the LC_cci corresponding to year 2008. 

2.4.3.1. Spatio-temporal HS clusters 

In order to obtain an adequate threshold for each area of the tile with a similar spectral 

behaviour, HS were first clustered using spatial and temporal conditions. The rationale 

behind this clustering is that HS that are near to each other and have a similar date are 

likely to be part of the same fire. So two conditions were applied to group HS in a same 

spatio-temporal cluster (STC): 

        - the distance between the HS must be < 3750 m. 

        - the difference of detection between the HS must be <= 4 days. 

The first condition is derived from a study carried out by Hantson et al. (2013) where the 

commission and omission relations of MODIS HS with fire reference perimeters were 

analysed. He found that an important proportion of HS was found in a 1500 m buffer 

distance set around the reference perimeters. So, after adding 375 m (1.5 pixels) to reduce 

problems related to geo-location, an area of influence of 1875 (RAI) m was established 

for each HS. HS with overlapping RAI were also included in the same STC, therefore the 

3750 m threshold. The second condition was derived from an analysis done by Archibald 

A 

B 

A B 
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and Roy (2009), where they used a threshold of 4 days to consider if two adjacent burned 

pixels were part of the same fire or not.  

Once the STC were created burned and unburned samples were obtained in order to find 

a representative threshold for each STC. The former class is represented by the PAFs of 

the STC while the latter is formed by pixels that are between 10 (RIN) and 20 (ROUT) 

kilometres from the nearest HS of the STC being analysed. Pixels that are within the RAI 

of any PAF of any STC are removed to reduce the presence of possible burned areas in 

the unburned sample. The RIN has been previously used in section 2.4.2 and the ROUT was 

set as the farthest distance from a HS that a burned pixel can be found based on the 

calibration areas. Then the following mathematical expression was applied in order to 

obtain the threshold of each STC: 

𝑇𝐻1,𝑖 =
1

3
∙ 𝑀𝑒𝑑𝐵,𝑖 +

2

3
∙ 𝑀𝑜𝑈,𝑖 

Where i represents each STC, MedB,i is the median of the burned class and MoU,i is the 

mode of the unburned class. Based on this simple lineal relation, different metrics were 

applied before the definitive expression was achieved. Mean (M), Median (Med) and 

Mode (Mo) metrics were used to find a representative value for each class. In the case of 

burned samples only M and Med were used, as the small sample size in some cases makes 

the Mo too unstable. The analysis showed that the best combination of metrics was given 

by the Med for the burned class and Mo for the unburned one (see Annex 2). 

Once these contextual thresholds were obtained spatial relations described in the 

following two sections were used to refine them. 

2.4.3.2. Spatial HS clusters 

In the following step the STCs were merged in spatial HS clusters (SC) attending only to 

the distance condition mentioned in section 2.4.3.1 (Figure 16). That previous step 

ensured a good burned sampling, especially in regions with a high HS density where too 

large groups are created if only a distance relation is used. So, based on the closeness of 

near STC, a new threshold is obtained for each SC: 

𝑇𝐻2,𝑗 =
∑ 𝑤𝑖 ∙ 𝑇𝐻1,𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

Where j represents each SC, N represents the total number of STC within j, i represents 

each STC within j, TH1,i is the threshold of i obtained in section 2.4.3.1 and wi is the 

weight of each STC given by the number of PAFs in it. 

 

Figure 16: Example of  the thresholding process in h30v10 (North Australia) of July 2008. In the image 

on the left spatio-temporal clusters have been coloured and on the right those STC have been merged in 

spatial clusters (SC).  
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2.4.3.3. Regional HS clusters 

The last adjustment that was applied to each TH2,j is based on the existing influence 

among SC groups that are close to each other. The final objective of the thresholding is 

to obtain thresholds for each area with a similar spectral behaviour. So thanks to the 

regional influence more stable thresholds are obtained for each area, since the influence 

of anomalous thresholds is reduced. Therefore, the area of influence of each SC is set as 

ROUT. A similar weighted average of the previous section is again applied: 

𝑇𝐻𝑘 =
∑ 𝑤𝑗 ∙ 𝑇𝐻2,𝑗

𝑀
𝑗=1

∑ 𝑤𝑗
𝑀
𝑗=1

 

Where k represents each SC, M represents the total number of SC within ROUT from k, j 

represents each SC within ROUT from k (including k), TH2,j is the threshold of j obtained 

in section 2.4.3.2 and wj is the weight of each SC given by the number of PAFs in it. 

All the process is done for both NIR and RelΔNIR variables, hence two thresholds are 

obtained for each SC, one per variable (TH_NIRk and TH_RelΔNIRk). However, in many 

cases SC belonging to a same spectral region will have a very similar or equal final THk. 

Besides, the initial PAFs are filtered in each level using the corresponding TH. Those 

filtered PAFs will be identified as seeds in the rest of the document.  

Figure 17 shows an example of the thresholds calculated for September of 2008 in Angola 

(h19v10). It is a clear example of how a context-based thresholding is able to better adapt 

the existing variety of reflectance in the MODIS standard tiles. 

  

Figure 17: Example of tile h19v10 (Angola) for September 2008. On the left LC_cci of 2008 and on the 

right burned patches coloured by their final threshold used in the growing phase. The contrast between 

different spectral regions is clear and also the relationship with the LC. 

2.5. Growing phase 

The growing phase of the algorithm aimed to improve the delimitation of BA patches 

from the previously detected seeds. It is based on applying contextual algorithms around 

seed pixels, as BA has lower NIR values than the surroundings unburned pixels. The 

growing phase has been computed over the NIR composite image and the RelΔNIR 

image.  
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2.5.1.  Growing method 

The growing was performed separately for each SC using contextual growth, starting 

from the seeds and classifying the neighbouring pixels. In this way, a pixel can be 

classified as burned only if a neighbour pixel is either a seed or a pixel previously 

classified as burned. The growth is done in branches, starting with the seeds and growing 

in the same row to the east and west until the next pixel doesn’t comply with the burned 

criteria. In the next iteration the growth is done to the north and south from those burned 

pixels, using the same criteria. In this way, the iterations are performed alternating east-

west and north-south until the whole burned patch is identified. An example is shown in 

Figure 18. 

  
              (a)              (b) 

Figure 18: Example of the growing procedure. (a) The orange pixels are the seeds, and the green pixels 

correspond to the burned area to be detected. (b) The numbers in the green pixels show the iteration in 

which they were detected. 

The growing phase classifies a pixel as burned when the following criteria are met: 

 the NIR value was lower than TH_NIRk, 

 the RelΔNIR value was lower than TH_RelΔNIRk, and  

 at least a neighbouring pixel was a seed or has been classified as burned in a 

previous iteration. 

 

Immediately after the growing phase of a specific SC was finished two criteria were 

applied in order to detect possible excessive growing: 

 The relation TOTAL_BA / Seeds > 1000 (62.5 km2) 

 BA within RAI / TOTAL_BA < 10% 

 

The first condition is related to the total amount of pixels that have been generated per 

seed. The second analyses the proportion of the total BA that is found in the RAI of any 

seed of the SC. Both conditions are quite unrestrictive so if any of them is fulfilled the 

burned patch is entirely eliminated.  

2.5.2. Spatial filter 

Once the growing phase was finished burned patches were refined using two spatial 

filters. The first one is oriented to reduce commission errors that might be generated by 

excessive growing that have not been detected by the conditions applied in the previous 

section. In some cases, unburned areas with a similar spectral behaviour than that of 

burned areas might create “bridges” between the burned area and other regions, 
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originating commission errors near the burned area (Figure 19). So in this first filtering a 

burned pixel will be considered unburned if: 

 It is out of RAI 

 In a 3x3 window, the northern and southern pixels or the eastern and western 

pixels are unburned. 

In a next step another spatial filter was applied to fill possible gaps that can be found 

within the burned patches. So the inverse of the previous second condition was applied 

to label an unburned pixel as burned: 

 In a 3x3 window, the northern and southern pixels or the eastern and western 

pixels are burned. 

  

                             (a)                                                                     (b) 

Figure 19: Example of the application of the “breaking bridges” filter to a burned patch in the Northern 

border of tile h08v05 (California) in June 2008. (a) Burned patch without the filter. (b) Burned patch after 

the filter. Red colour shows the FRAP perimeters, black the unburned pixels and grey the commission 

errors. 

2.6. Uncertainty 

FireCCI51 computed the uncertainty of the burned classification of both the burned and 

unburned pixels. This uncertainty was calculated using four variables related to the 

probability of each pixel of being burned or not. 

The first variable was the number of valid observations available in the first 10 post – fire 

days. In the previous version total number of observations were used, but this does not 

take into account the position of the valid observation with respect to the HS date. So, the 

use of the first 10 post – fire valid observations was considered to be a better approach to 

estimate uncertainty (Figure 20). The rationale behind this variable was that the higher 

the number of observations, the lower the uncertainty in the observation. This variable 

had values between 0 and 10. 

The second variable was the NIR reflectance (Figure 21). In this case, the lower the NIR 

value, the higher the probability of the pixel to be burned, and the lower the uncertainty 

in the burned classification. The variable had values between 10000 (highest NIR value 

and lowest probability of burn) and 0 (lowest NIR value and highest probability of burn). 

The reason for these values was the original scale factor of 0.0001 of MOD09GQ product.  
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Figure 20: Number of post-fire valid observations of an area of the tile h30v10 (Australia) for June 2008. 

 

Figure 21: Probability of burn variable related to the NIR reflectance of an area of the tile h30v10 

(Australia) for June 2008. The lower the value, the higher the probability of the pixel being burned.  

The third variable was similar to the second, but considering the percentage of NIR 

decrease between t-1 and t. This variable had a behaviour inverse to the NIR: the higher 

the RelΔNIR, the higher the probability of the pixel being burned. The values ranged 

between -∞ and 1000, where 1000 represent 100% of relative NIR decrease (Figure 22). 

This variable values have a 0.001 scale factor. 

 

Figure 22: Probability of burn variable related to the RelΔNIR values of an area of the tile h30v10 

(Australia) for June 2008. The higher the value, the higher the probability of the pixel being burned. 



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 28 

 

The last variable used to calculate the uncertainty was the distance to the nearest PAF. 

The variable was calculated after the final PAFs and, consequently, burned area, were 

obtained. The distance unit is metre and it ranges from 0 to N metres; in this case N, the 

maximum distance, will be the diagonal of a MODIS standard tile (Figure 23). A lower 

distance means that the pixel is near a PAF (seed), so the lower the value, the higher the 

probability of burn. 

 

Figure 23: Probability of burn variable related to the distance to the PAF of an area of the tile h30v10 

(Australia) for June 2008. The lower the value, the higher the probability of the pixel being burned. 

The approach used to estimate the uncertainty was through a logistic regression model. 

To develop the model five global zones were used to generate unburned and burned 

samples from the FireCCI51 classification: Australia (h30v10), Canada (h11v03, 

h12v03), California (h08v05) and Angola (h19v10). These tiles were selected based on 

the diversity of vegetation found in them. 2008 was selected because is the reference year 

used to calibrate the algorithm. 

The logistic regression was performed following a k-Fold validation (k = 10). The results 

are presented in the next formula: 

𝑝 =
1

1 + 𝑒𝑐
 

𝑐 =  −(3.533 − 0.01175 ∗ 𝑜𝑏𝑠 − 0.001996 ∗ 𝑁𝐼𝑅 + 0.01417 ∗ 𝑁𝐼𝑅𝑟𝑒𝑙𝑑𝑟𝑜𝑝 − 0.0009282 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

 

The rationale behind the NIR and distance variables sign is that the lower the value, the 

higher the probability of being burned. Also the relative NIR drop keeps the same relation 

with burned probability. However, the number of observations had a coefficient that 

means the inverse sense of the expected: the lower the number of observations, the higher 

the probability of burned. 

The uncertainty is expressed by a value between 0 and 100 representing the probability 

of each pixel to being burned (Figure 24). 
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Figure 24: Uncertainty of an area of the tile h30v10 (Australia) for June 2008. The values represent the 

probability of each pixel being burned. 

2.7. Date of first detection 

To assign to each burned pixel the date of the first fire detection (also called day of the 

year – DoY, or Julian Day – JD), the date of the composite was used (Figure 25), because 

the algorithm was based on the NIR reflectances of the MODIS composite. When there 

was a good coverage of the area, this date differed only slightly from the date of the 

hotspot, but in areas with a low number of valid observations, the difference between the 

dates could exceed 20 days.  

 

 
              (a)              (b) 

Figure 25: (a) Dates of detection of an area of tile h30v10 (North Australia) of July 2008. (b) Dates of 

detection of an area of tile h19v10 (Angola) of September 2008. 

3. Formatting MODIS-based BA data to PSD-compliant products 

This piece of software was designed to obtain the final pixel and grid products following 

the specifications of the Product Specification Document (PSD, Chuvieco et al., 2017). 
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3.1. Pixel product 

3.1.1. Binning 

The pixel products are stitched products which consist of the result of the BA algorithm 

described in the previous section. According to the PSD, the pixel products are created as 

subsets of 6 zones: North and Central America, South America, Europe, Africa, Asia, and 

Australia. They have the spatial resolution of the MODIS data (approx. 250m), but the 

coordinate system differs, so the pixel values cannot be directly copied from source to 

target, as it was done for the MERIS product. Instead, the pixel products were created 

using the binning technique, which has been defined by NASA and is described in Hooker 

et al. (1995). This technique is a fundamental part of the Calvalus system, and allows the 

aggregation of multiple input images spatially and temporally, and thus creates 

aggregated (so-called Level 3 - L3) maps.  

Basically, the pixel products are composites computed by temporally aggregating BA 

pixels into spatial equal-area bins (binning). The bin cells in a pixel product are arranged 

in an integerised, sinusoidal grid (ISIN) which is compatible to the one used for ESA 

MERIS L3 products and the MODIS L3 products generated by the NASA Ocean Biology 

Processing Group (OBPG). After the aggregation is done, the data is re-projected onto a 

configurable target grid – in the Fire_cci case, this is a geographic lat/lon grid of 

0.0022457331 degrees (approximately 250 m at the Equator), as defined in the PSD. The 

complete description of the L3 generation methodology can be found in Hooker et al. 

(1995). Figure 26 depicts the processing scenario. 

 

Figure 26: Calvalus L3 processing 

It is noteworthy that the spatial binning and the temporal binning employ a specific piece 

of software, the so-called aggregator. Basically, an aggregator provides the strategies for 

spatial and temporal binning. Operating on single bin cells, an aggregator provides the 

answers for: 

 Spatial binning: how are input samples of a single observation (swath) aggregated 

to spatial bins? 

 Temporal binning: how are spatial bins aggregated to temporal bins? 

 Final statistics: how are final statistics computed? 
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3.1.2. The ModisJDAggregator 

There are multiple built-in aggregators in Calvalus, such as an aggregator that computes 

a mean value of the input data, or another one that computes the min and max values of 

the input data. For the aggregation of the MODIS BA data, a dedicated aggregator has 

been newly developed, the “ModisJDAggregator”. This aggregator produces two of the 

three image layers the pixel products consist of: JD (the day of the year of first detection 

of the fire) and CL (the level of confidence of the observation). The third layer, LC (which 

is the land cover class, according to the PSD), is computed in a dedicated finalisation step 

which is described in Section 3.1.3. 

The ModisJDAggregator does only a spatial aggregation, as the processing is configured 

to use only those BA products from the month which is aggregated; so if the processing 

task is to create the pixel product for January 2015, only input data from January 2015 is 

considered. The spatial aggregation is done as shown in the pseudo-code below: 

validJdSet = previousJDValue >= 0  

 && previousJDValue >= first day of month  

 && previousJDValue <= last day of month; 

A valid JD value has already been set if it is positive, and within the considered month. 

inTimeBounds = true if jd >= minDoy and jd <= maxDoy 

It is checked if the JD value from the current observation is within the considered month, 

in order to prepare the check if the value should be preferred to the previous value. This 

only happens when multiple pixels contribute to a single bin cell, and is done according 

to the following rule set: 

preferToPreviousValue = true if: 

  no validJdSet or the new value is earlier than old value 

  and the new value is >= 0 

  and the new value is within the month 

 

If the value should be preferred over the previously set value, it will be set to the target 

bin cell as well as the CL value: 

 

if preferToPreviousValue: 

    set new JD to current JD value 

    set new CL to current CL value  

3.1.3. Finalisation 

In order to create the LC image layer and the metadata, a finalisation step is run after the 

binning step. This step takes as input the result of the binning step. For each pixel, the 

process checks if the pixel is in a burnable class and does the respective re-mapping: if 

the pixel is reported to have burned, but the respective LC class of that pixel is not 

burnable, the JD value of the pixel is changed to 0 (not burned). The same is done for the 

confidence level: if the pixel is reported to have burned, but the respective LC class of 

that pixel is not burnable, the CL value of the pixel is changed to 0. These cases could 

happen due to the re-projection from the sinusoidal projection of the BA algorithm to the 

geographical coordinates of the PSD-compliant product. Also, the LC class is set to each 

burned pixel; in other pixels, it is set to 0.  



 

 

Fire_cci 
Algorithm Theoretical Basis 

Document – MODIS 

Ref.: Fire_cci_D2.1.3_ ATBD-MODIS_v2.0 

Issue 2.0 Date 20/11/2018 

Page 32 

 

The result files are written to disk; it is configurable if all image layers (JD, CL, and LC) 

shall be written into a single GeoTIFF-file, or if three independent files shall be written 

(as has been done for v5.0 and v5.1). Finally, the metadata is produced by simple pattern 

replacement of a template XML, and also written to disk. 

3.2. Grid product 

The grid products are global products which aggregate the result of the BA algorithm 

described in Section 2. They are mapped onto a 0.25-degree spatial resolution grid. 

Hence, the pixels in the result of the BA algorithm cannot simply be copied, but need 

some aggregation. This aggregation is performed from the outputs of the BA algorithm 

in sinusoidal projection. 

In order to find the correct input pixels for each grid cell in a performant way, dedicated 

lookup-tables have been generated. These lookup-tables provide the positions of the input 

pixels for all MODIS tiles and for each grid cell, which are constant for the whole time 

series. Without these lookup-tables, it would have been necessary to compare the geo-

position of each pixel in the BA results with the geo-boundaries of each grid cell, which 

would have been a very costly operation. Instead, this has been only done once, precisely 

for the generation of the lookup-tables. 

The lookup-tables are provided as JSON files and have the following structure: 

{"h18v02":["3349,983","3349,982","3349,985","3374,1069","3349,

984","3374,1068","3349,981", ...], 

"h19v02":["3149,3548","1568,1641", ...], ...} 

The target grid cell is given by the file name; the example above is an excerpt from the 

file “modis-geo-lut-794-88.json”. 

These lookup-tables have been generated by the following algorithm, given in pseudo-

code: 

for each target grid cell c, do: 

 result file = open new json file for writing 

 for each MODIS tile t, do: 

  for each pixel p in t, do: 

   g = geo-position g of p; 

   if g is inside bounds of c: 

    write p into result file  

The layers created for the grid product are: the sum of BA, the standard error of the burned 

area, the fraction of burnable area, the fraction of observed area, the number of patches, 

and the sum of burned area of each land cover class. In the following sections, it is 

explained how these layers are derived from the BA algorithm result and from LC data. 

3.2.1. Sum of burned area 

The sum of burned area is given in m², and computed by identifying for each target grid 

cell the pixels of the source grid. 
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for each grid cell c in the target grid, do: 

 find the respective lookup table l 

 for each tile t and source pixel sp in l, do: 

  fetch the BA product belonging to t 

if sp is burned, in time bounds & in valid LC class: 

            burned_area(c) = burned_area (c) + area(sp)        

Note that area(sp) is a constant value (~53664 m²), as the MODIS grid is an equal-area 

grid. 

3.2.2. Standard error 

The standard error also is given in unit m². It is computed after the burned area has been 

identified, as an aggregation of the confidence level of each source pixel. The basis of the 

aggregation is explained in Annex 3. 

for each grid cell c in the target grid, do: 

 find the respective lookup table l 

for each tile t and source pixel sp in l, do: 

fetch the BA product belonging to t 

 probabilityOfBurnFirstHalf(c) = confidence_level(sp) 

 initialise sum_pb = 0.0 

for each probability p, do: 

if p is valid: 

            sum_pb += p; 

S = numberOfBurnedPixels / sum_pb 

initialise array pb_i_star 

for each probability pb_i, do: 

pb_i_star[i] = pb_i * S; 

initialise var_c = 0.0 

initialise count = 0 

for each scaled probability pb_s in pb_i_star, do: 

var_c = var_c + pb_s * (1 - pb_s); 

if pb_s is valid: 

count = count + 1 

se(c) = sqrt(var_c * (count / (count - 1.0))) * area; 

Note: confidence_level = the value of the CL variable in the BA product, and area = 

~53664 m². 

3.2.3. Fraction of burnable area 

The fraction of burnable area is given as a unitless value between 0 and 1, where a cell 

value of 1 indicates that the whole area covered by the cell consists of burnable pixels, as 
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indicated by LC_cci, while a value of 0 indicates that no source pixels of the area covered 

by the cell are burnable. 

for each grid cell c in the target grid, do: 

 initialise burnable_temp = 0 

find the respective lookup table l 

for each tile t and source pixel sp in l, do: 

  fetch the LC product p belonging to t 

         if p(sp) is burnable: 

burnable_temp = burnable _temp + area(sp) 

burnable(c) = burnable_temp / area(c) 

Note that here, area(c) denotes the area of the target grid cell. 

3.2.4. Fraction of observed area 

The fraction of observed area is given as a unitless value between 0 and 1, where a cell 

value of 1 indicates that the whole burnable area covered by the cell has been observed, 

while a value of 0 indicates that no source pixels of the burnable area covered by the cell 

have been observed. 

for each grid cell c in the target grid, do: 

 initialise OAF_temp = 0 

find the respective lookup table l 

for each tile t and source pixel sp in l, do: 

  fetch the BA product p belonging to t 

         if p(ps) has been observed and sp is burnable: 

OAF_temp = OAF_temp + area(sp) 

OAF(c) = OAF_temp / burnable(c) 

Note that burnable(c) denotes the burnable area of the target grid cell, as calculated in 

Section 3.2.3. 

3.2.5. Number of patches  

The number of patches provides for each grid cell the count of different patches within 

the cell. A patch is a contiguous group of burned pixels. The algorithm to find the patches 

is a modified standard graph traversing algorithm called depth-first-search1. 

for each grid cell c in the target grid, do: 

find the respective lookup table l 

for each tile t and source pixel sp in l, do: 

run depth-first-search 

if burned pixel is encountered: 

                                                 
1 See https://en.wikipedia.org/wiki/Depth-first_search, accessed March 2018. 

https://en.wikipedia.org/wiki/Depth-first_search
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mark pixel as burned 

increment count of patches 

    patch_number(c) = count of patches 

3.2.6. Sum of BA of each LC class 

The sum of BA in each land cover class allows discriminating the different land covers 

affected by the fire in each grid cell. For each LC class, it is computed as follows: 

for each LC class lc, do: 

for each grid cell c in the target grid, do: 

find the respective lookup table l 

  for each tile t and source pixel sp in l, do: 

     if sp is burned and corresponds to lc: 

    BA (lc, sp) = BA(lc, sp) + area 

Note: area = ~53664 m². 
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Annex 1: Acronyms and abbreviations 

 

BA Burned Area 

BDRF Bidirectional Reflectance 

Distribution Function 

CCI Climate Change Initiative 

CDF Cumulative Distribution 

Function 

Ce Commission error 

CHSD Closest hotspot day 

DC Dice Coefficient 

DoY Day of the Year 

ECV Essential Climate Variables 

ESA European Space Agency 

ETM+ Enhanced Thematic Mapper 

Plus 

FOV Field of view 

FRAP Fire Resource Assessment 

Program 

GCOS Global Climate Observing 

System 

GEMI Global Environmental 

Monitoring Index 

HS Hotspot 

IPCC Intergovernmental Panel on 

Climate Change 

ISIN Integerised sinusoidal grid 

JD Julian Day, also day of the 

year of first detection of a 

fire 

JSON JavaScript Object Notation 

L3 Level 3 

LBD Likely burned date 

LC Land Cover 

LC_cci Land Cover CCI 

MERIS Medium Resolution Imaging 

Spectrometer 

MODIS Moderate Resolution 

Imaging Spectroradiometer 

NA Not applicable 

NAFI North Australian Fire 

Information 

NIR Near InfraRed 

OBPG Ocean Biology Processing 

Group 

Oe Omission error 

PAF Potential Active Fire 

Pb Probability of burn 

PSD Product Specification 

Document 

PDF Probability Distribution 

Function 

QA Quality assessment 

R Red Band 

RelΔNIR Relative NIR drop 

SC Spatial Cluster 

STC Spatio-temporal Cluster 

TH Threshold 

TH_S Seed Threshold 

TM Thematic Mapper 

XML eXtensible Markup Language 
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Annex 2: Analysis of metrics for spatio-temporal HS clusters 

Table 4: Commission error (Ce), omission error (Oe) and Dice Coefficient (DC) of different metric 

combinations. B refers to burned and U to unburned. 

Tile Error MedB 

MeanU 

MedB 

MedU 

MedB 

MoU 

MeanB 

MeanU 

MeanB 

MedU 

MeanB 

MoU 

h30v10 

Ce 12% 12.7% 13.6% 12.2% 13% 13.8% 

Oe 25.8% 23.1% 21.1% 25.4% 22.7% 20.7% 

DC 0.805 0.817 0.825 0.807 0.819 0.826 

h11v03 

Ce 84.6% 87.1% 86.9% 85.1% 86.5% 86.6% 

Oe 64.4% 63.9% 62.9% 63.7% 63.3% 62.4% 

DC 0.215 0.19 0.194 0.211 0.198 0.198 

h12v03 

Ce 10.8% 11.4% 11.9% 11% 11.5% 12.0% 

Oe 35.1% 31.4% 26.9% 34.2% 30.6% 26.0% 

DC 0.751 0.774 0.799 0.757 0.778 0.804 

h08v05 

Ce 28.2% 29.7% 31.5% 28.7% 30.1% 32.2% 

Oe 25.7% 24.4% 22.9% 25.8% 24.9% 24.3% 

DC 0.731 0.729 0.726 0.727 0.724 0.716 

Global 

Ce 12.6% 13.4% 14.3% 12.8% 13.6% 14.4% 

Oe 26.5% 23.7% 21.5% 26% 23.3% 21.2% 

DC 0.799 0.811 0.820 0.800 0.813 0.821 
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Annex 3: Aggregation of the MODIS BA confidence level to the grid 

product 

The outputs of the MODIS BA algorithm provide a binary indicator of the presence of a 

fire within a certain time period (a month). This information is extended with the most 

likely date of the fire taken place if a fire has been detected. This information is available 

at high spatial resolution (10s-100s of m grid size), and is too detailed for climate users, 

where spatial resolution is usually of the order of 100s of km. In order to aggregate the 

high resolution information to the coarser climate grid of 0.25 degrees, the procedure 

starts by defining what high resolution pixels fall within a given grid cell, and then 

counting the pixels in that set that have burned. This is either reported as an area 

(multiplying the sum of burned pixels by the individual high resolution pixel area), or as 

an area fraction.  

A major development in the ESA Fire CCI is the addition of uncertainty information. This 

means that each pixel is qualified by some uncertainty, a so-called probability of burn, 

pb. This is a number between 0 (absolute certainty that the pixel did not burn in the 

temporal interval considered) to 1 (absolute certainty that the pixel did burn in the 

temporal interval considered). This metric should reflect the degree in which factors limit 

the detection of fires (e.g. the observational opportunity, the inevitable limitations of the 

pre-processing chain, such as residual atmospheric effects not fully corrected by 

atmospheric correction, gridding artefacts, the properties of the fire and its effect in the 

remote sensing signal, etc.). These developments affect how one does aggregation to a 

coarser resolution. 

A3.1. Aggregation basics 

From the point of view of the ESA Fire CCI pixel-level product, there are two layers 

which are relevant: the date of first detection (JD), and confidence level (CL). 

Additionally, some pixels will be labelled as non-burnable (e.g. ocean or lakes, deserts, 

etc.), or may be deemed unobservable (insufficient number of observations). Those with 

insufficient observations form an important aspect of the grid cell information, either for 

use as a quality control measure or for attempting a correction for missing values. For this 

reason all pixels considered ‘non burnable’ should be labelled as such, even if they are 

not observed. Generally speaking, the burned area inside a grid cell can be determined as 

the sum of pixels where the first date of detection is between 0 and 366 (both inclusive), 

multiplied by the area of the pixel. This is intuitive and in line with previous estimates. 

However, if the confidence layer is interpreted as a probability of burn, pb, (and in 

consequence, a probability of not being burned of 1- pb), then this information would need 

to be scaled up to the grid cell, as a form of standard error. There are two common 

definitions relating to standard error2: (i) the square root of the estimated error variance 

(standard deviation); (ii) the standard error of a sample of sample size n is the sample 

standard deviation divided by √𝑛. It is necessary to consider then which would be 

appropriate in this context. 

The sample variance 𝜎2 of a sample set of size n is given by: 

                                                 
2 Weisstein, E.W. Standard Error. From: MathWorld – A Wolfram Web Resource, available at 

http://mathworld.wolfram.com/StandardError.html (accessed March 2018). 

 

http://mathworld.wolfram.com/StandardError.html
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𝜎2 =
1

𝑛
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

, 

where 𝑦𝑖 is sample i and �̅� is the sample mean, given by 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

The sample terms �̅� and 𝜎2 are random variables, and the expected value of the variance 

�̂�2is given by 

�̂�2 =
𝑛

𝑛 − 1
𝜎2 

Often, 𝜎2 is the biased sample variance and �̂�2 is the unbiased sample variance. Going 

back to the earlier discussion of definitions of standard error, the first definition �̂�1 (square 

root of the estimated error variance) is thus 

�̂�1 =
𝑛

𝑛 − 1
𝜎 

 

where 𝜎 is the sample standard deviation. Using the second definition (sample standard 

deviation divided by √𝑛), then 

�̂�2 =
1

√𝑛
𝜎1 

 

The first definition is more consistent with many uses of standard error in the physical 

sciences, where it takes the role of an unbiased estimate of the standard deviation of a 

distribution. If the distribution is assumed Normal and 𝑦 is continuous (or effectively 

continuous if n is large), then the estimate of the mean (�̅�) and standard deviation 𝜎1 fully 

define the Probability Distribution Function (PDF) for BA. 

The second definition is more directly related to the uncertainty of the mean and is used 

in the definition of probable error. The standard error of the mean is given by 𝜎2. So, with 

more samples (greater 𝑛) the mean of the distribution can be better estimated. 

In the light of this, the formula used is: 

�̂� =
1

√𝑛 − 1
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 

which is a unbiased estimate of the likely variability in burned area. 

 

Assuming that each pixel has an independent probability of burn 𝑝𝑏, which can be 

different for every pixel, then the sum of these independent probabilities is given by a 

Poisson Binomial distribution. This distribution is only defined over positive integer 

numbers, and has first and second order statistics given by 
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𝑁𝑏
̅̅̅̅ = ∑ 𝑝𝑏,𝑖

𝑁𝑝

𝑖=1

 

𝜎𝑏
2 = ∑ 𝑝𝑏,𝑖

𝑁𝑝

𝑖=1

(1 − 𝑝𝑏,𝑖) 

In Figure 27, the full PDF derived from a set of samples is shown, each characterised by 

a different 𝑝𝑏. The PDF was calculated as a Poisson binomial, as well as the mean and 

variance using the equations above, and the normal approximation to the PDF was plotted. 

For a large number of samples, the skewness of the PDF was very low, and the PDF was 

acceptably approximated by a Gaussian distribution. This is of importance, as it means 

that one can parametrize the full PDF of BA using only the mean and the “standard error” 

(defined as the standard deviation in the discussion above), and in accordance to the 

product specification.  

 

Figure 27: The Poisson binomial PDF (green line) derived from a simulated set of independent samples 

(300, 100 with probabilities between 0.7 and 0.9, 100 with probabilities between 0.2-0.3 and 100 with 

probabilities between 0-0.1). A Gaussian approximation (red line) derived from calculating the mean 

(~110) and standard deviation (~39) is also shown. Skewness was ~0.01. 

 

 

Figure 28: Example of aggregation. See text for more details. 
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Figure 28 shows a typical workflow. The top left panel shows the spatial distribution of 

some metric s that is somehow related to burned area (e.g. reflectance in some band, or a 

band combination). The burn scars are characterised by larger values in this space, and it 

is clear that there is some randomness. On the panel below that one, a mapping from the 

s to probability of burn is shown (in this case, it was done using a simple logistic 

regression, but this is general). The middle top panel shows the spatial distribution of the 

probability of burn, which shows a speckly but visually clear distribution of burn area. If 

a threshold is applied to the probability of burn map (so that e.g. any pixel with 𝑝𝑏 > 0.5  

is assumed burned), the result is a binary map with a value of 0 for values below 0.5 and 

1 for values above. Finally, the aggregation from both approaches can be displayed. The 

thresholded approach results in a single value, the sum of pixels above the threshold (in 

this example, 1916). The proposed aggregation using a Poisson binomial results in a PDF 

(again the Poisson Binomial and the Gaussian approximation are shown), with a mean of 

~2760 and a standard deviation of ~30. The actual number of burned pixels in this case 

was around 2780.  

A3.2. Unreliable probability of burn estimates 

Since the quantification of probability of burn per pixel is still fairly new, and both users 

and product developers are more used to using the sum of pixels aggregation, it might be 

useful to consider how to make both approaches compatible. One simple approach might 

be to re-scale 𝑝𝑏 based on the sum of pixels: if the mean of the Poisson binomial (or 

Gaussian approximation) is given by the sum of pixels (rather than by the sum of 

individual 𝑝𝑏), then the individual values of 𝑝𝑏 can be scaled so that the mean is identical 

to the sum of pixels (Figure 29), and then use that rescaled 𝑝𝑏 to calculate the standard 

deviation and thus provide some form of uncertainty estimate. 

 

Figure 29: Example of applying the rescale approach to the example shown in Figure 28. 
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