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1 Introduction 

1.1 Objectives of CDOM option 

Lakes play an important role as regulators of the carbon cycle. Lakes can act as both a sink (sediment 

storage through flocculation from dissolved to particulate organic carbon) and a source for carbon 

(degradation and resulting mineralisation to CH4, CO and CO2). Approximately 90-95% of the Total 

Organic Carbon (TOC) in lakes consists of Dissolved Organic Carbon (DOC) making it one of the most 

effective estimates of carbon in lakes. Coloured dissolved organic matter (CDOM) is a, potentially lake or 

region-specific, proxy for DOC. Thus, observing CDOM at the global scale could mark a step change in 

studying global lake carbon.  

Sentinel-3 provides the continuity (ENVISAT MERIS) of satellite observations with appropriate spectral, 

spatial and radiometric resolutions to retrieve CDOM time-series. The Lakes_cci project baseline activities 

provide chlorophyll-a and turbidity as products derived from Lake water-leaving reflectance (LWLR). 

However, it does not currently address CDOM because globally validated algorithms are lacking. Research 

is needed to bring CDOM into the adaptive algorithm selection methodology of LWLR. The development 

of retrieval algorithms for CDOM has thus far mainly focused on marine systems and particularly open 

ocean waters (e.g., Carder et al., 1999; Shanmugam, 2011). However, there has been an effort over the 

last decades to develop CDOM algorithms for optically complex inland waters, where suspended 

sediments, phytoplankton and related particles vary independently with CDOM (Kirk, 2011; Kutser et al., 

2005; Olmanson et al., 2020). Although some progress has been made in the collection of in situ data 

and development of algorithms, there is no algorithm ready to be applied to lakes globally. The dynamic 

algorithm selection approach (Neil et al., 2019; Liu et al., 2021) based on the 13 distinct Optical Water 

Types (OWTs) defined by Spyrakos et al. (2018) provides a robust framework to introduce algorithm 

concepts that may not have global validity but perform well for optically distinct sets of lakes, which could 

be adopted for wider CDOM retrieval. 

The Lakes_cci Phase 2 introduces R&D on CDOM retrieval at the global scale. The work includes a CDOM 

algorithm round-robin and tuning in an OWT framework, reporting to the inland water quality remote 

sensing community if it is possible to retrieve CDOM in global waters, for which optical cases reliable 

CDOM retrieval is feasible and where further work is needed. In line with existing efforts in the baseline 

activities for chlorophyll-a and turbidity, this work will characterise the uncertainty of the CDOM Lakes_cci 

product. This could ultimately lead to a global, long-term CDOM Lakes_cci product with characterised 

uncertainty per pixel. Activities foreseen in this work include the preparation of the in situ and satellite 

data to be analysed, the match up of in situ data with MERIS and OLCI, the benchmarking and tuning of 

CDOM algorithms for different OWTs, the validation of suggested algorithms with time series of available 

in situ data and the establishment of relationships between CDOM and DOC for specific lakes, regions or 

conditions.  

 

1.2 Purpose of this document 

This document, CCN-D-1 is the technical note of CDOM algorithm assessment for a global distribution of 

lakes, providing details on the in-situ data collection, selection, and assessment of published CDOM 

algorithms, algorithm recalibration and testing, algorithm comparison and recommendations for different 

water types. It also reports in which optical types the published CDOM algorithms can retrieve CDOM and 

where more work is needed to improve accuracy of CDOM estimates. This information will feed into 

deliverable CCN-D-2 “CDOM production validation” and will provide input to the final version of the 
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Algorithm Theoretical Basis Document (ATBD) and user requirement documents (URD) of the Lakes_cci 

project.  
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2 Data collection 

2.1 In situ data collection 

In situ remote sensing reflectance (Rrs), with corresponding absorption coefficient of CDOM at 440 nm 

(aCDOM(440)) data, were mainly compiled from LIMNADES database and GLORIA database. We also added 

previously unpublished data from the NERC project GloboLakes, and H2020 projects MONOCLE and 

CERTO. The latter includes in situ data from transitional aquatic systems around Europe. In total, 5082 

in situ Rrs–aCDOM(440) data pairs were collected, which cover global inland and coastal waters (Figure 1), 

with aCDOM(440) ranging from 0.0025 m-1 to 42.47 m-1, with a mean value of 1.01 m-1.  

Rrs was collected using radiometers deployed under or above the water surface. Not all in situ Rrs have 

the same spectral range: 2719 data points cover the range 400-850 nm, while 4414 data points cover 

the range 400-800 nm. aCDOM(440) from GloboLakes, MONOCLE and CERTO projects in LIMNADES was 

spectrophotometrically determined from 0.2 µm filtrates. Methodological detail for the other LIMNADES 

data sets is provided in Table 2 in Spyrakos et al. (2018), and GLORIA database details can be found in 

Lehmann et al. (2022). 

 

Figure 1. Spatial distribution of collected in situ Rrs–aCDOM(440) data, with colour indicating ranges of 

aCDOM(440) values, and density plots at the top and right sides of the graph are the distribution of data 

collected along longitudinal and latitudinal axes. 

 

When classifying the in situ Rrs into the 13 lake optical water types from Spyrakos et al. (2018), the most 

commonly OWTs with highest similarity (based on spectral angle) were OWT 2 (16.9%), OWT 3 (18.5%), 

OWT 4 (11.0%) and OWT 9 (15.0%). Relatively few samples showed highest similarity to OWT 1 (0.7%), 

OWT 10 (0.7%) and OWT 7 (1.2%) (Table 1). A summary of characteristics of the 13 lake optical water 

types from Spyrakos et al. (2018) is provided in Table 2. Figure 2 shows histograms of aCDOM(440) 

associated with the samples separated by most similar OWTs. Values of aCDOM(440) corresponding most 

closely with OWT 6, 11 and 12 are generally higher than the other OWTs, and the aCDOM(440) of OWT 13 

is the lowest among the 13 groups.  
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Table 1. List of number of in situ Rrs-aCDOM(440) data for each of the OWT. 

OWT 1 2 3 4 5 6 7 8 9 10 11 12 13 

Number 

of data 

37 857 941 558 128 403 63 244 764 35 394 475 183 

 

 

Table 2. Summary of the 13 inland water optical water types defined in Spyrakos et al. (2018) 

OWT Dominant characteristics 

1 Hypereutrophic waters with scum of cyanobacterial bloom and vegetation-like Rrs 

2 Common case waters with diverse reflectance shape and marginal dominance of pigments and 

CDOM over inorganic suspended particles 

3 Clear waters 

4 Turbid waters with high organic content 

5 Sediment-laden waters 

6 Balanced effects of optically active constituents at shorter wavelength 

7 Highly productive waters with high cyanobacteria abundance and elevated reflectance at red/near-

infrared spectral region 

8 Productive waters with cyanobacteria presence and with Rrs peak close to 700 nm 

9 Optically neighbouring to OWT2 waters but with higher Rrs at shorter wavelengths 

10 CDOM-rich waters 

11 Waters high in CDOM with cyanobacteria presence and high absorption efficiency by NAP 

12 Turbid, moderately productive waters with cyanobacteria presence 

13 Very clear blue waters 
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Figure 2. Histogram of in situ measured aCDOM(440) according to the most similar OWT. Red dashed lines 

are the median values. 
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2.2 Data processing 

Due to different instrumentations in collecting reflectance data (e.g., TriOS, ASD), the spectral intervals 

of original collected Rrs are different. In this report, all in situ Rrs data were firstly linearly interpolated into 

1 nm intervals. Some spectra data showed clear offsets because of either residual reflected skylight or 

incorrect band selection for null-point correction at near-infrared wavelength, so all Rrs spectra were 

further processed using the method from either Ruddick et al. (2005) or Jiang et al. (2020) according to 

band availability, to address the Rrs magnitude offset problem. Finally, all interpolated Rrs spectra were 

further convolved to Sentinel-3 Ocean and Land Colour Instrument (OLCI) bands using the OLCI spectral 

response function (SRF). Rrs corresponding to OLCI wavebands were then used in aCDOM algorithm 

assessment and recalibration. It should be noted that the Rrs in this report is defined as the remote 

sensing reflectance just above water surface with a units of sr-1, it is the ratio between water-leaving 

radiance (Lw) and the irradiance (Ed) above water surface. 

Some of the published algorithms we assessed are developed to estimate aCDOM at 443 nm. To reduce 

the uncertainties caused by this band difference in algorithm assessment, 620 data pairs of in situ 

aCDOM(440) and aCDOM(443) were used to model and convert the relationship between the two wavebands 

as follows: 

𝑎CDOM(440) = 1.0495 × 𝑎CDOM(443)
1.0012      (1) 
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3 Assessment of published algorithm 

3.1 Algorithm selection 

Based on comprehensive literature review, 16 algorithms were selected for the assessment of aCDOM(440) 

estimation. The selected algorithms include empirical, semi-analytical and machine learning approaches. 

A summary of the reference, the wavelength of estimated aCDOM, the waveband(s) used for aCDOM 

estimation, and the sensor(s) for which the algorithm was developed, are listed in Table 3. The last column 

in Table 3 indicates the abbreviation of the algorithm used in this report, where “org” specifies the original 

formulation of the algorithm prior to any adaptation of algorithm coefficients. 

 

Table 3. Summary of algorithms for estimating aCDOM(440), selected from literature. 

 Type  Algorithm CDOM  Band used, sensor Abbreviation  

1 

 

Empirical 

Mannino et al., 

2008 

aCDOM(443) Rrs490/Rrs560, MODIS M08-M-org 

2 Mannino et al., 

2008 

aCDOM(443) Rrs490/Rrs560, SeaWiFS M08-S-org 

3 Mannino et al., 

2014 

aCDOM(443) Rrs413/Rrs560, MODIS 

(band ratio method) 

M14-BM-org 

4 Mannino et al., 

2014 

aCDOM(443) Rrs413/Rrs560, SeaWiFS 

(band ratio method) 

M14-BS-org 

5 Mannino et al., 

2014 

aCDOM(443) Rrs443, Rrs560, MODIS 

(MLR method) 

M14-MM-org 

6 Mannino et al., 

2014 

aCDOM(443) Rrs443, Rrs560, SeaWiFS 

(MLR method) 

M14-MS-org 

7 Ficek et al., 

2011 

aCDOM(440) Rrs560/Rrs665, in situ 

data 

F11-org 

8 Shanmugam, 

2011 

aCDOM(440) Rrs443/Rrs560, SeaWiFS S11-org 

9 Brezonik et al., 

2015 

aCDOM(440) B5/B12, Sentinel-3 OLCI B15-org 

10 Mabit et al., 

2022 

aCDOM(440) Rrs665/Rrs560, Landsat-8 

OLI and Sentinel-2 MSI 

M22-org 

11 

Semi-

analytical 

 

Zhu & Yu, 

2013, original 

aCDOM(443) Multiple bands, EO-

Hyperion 

Z13-org 

12 Zhu & Yu, 

2013, QAA_v6 

aCDOM(443) -- Z13-v6 

13 Zhu & Yu, 

2013, 

QAA_Mishra 

aCDOM(443) -- Z13-Ms 

14 Zhu & Yu, 

2013, 

QAA_hybrid 

aCDOM(443) -- Z13-hy 

15 Wang et al., 

2017 

aCDOM(443) Multiple bands, GOCI W17-cj 

16 Machine 

learning 

Pahlevan et al., 

2022 

aCDOM(440) Landsat-8 OLI, Sentinel-2 

MSI, Sentinel-3 OLCI 

MDN 
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The original algorithm from Zhu & Yu (2013) is based on the Quasi-Analytical Algorithm (QAA), and some 

of the QAA steps are retuned in that paper. To test the feasibility of the Zhu & Yu (2013) aCDOM algorithm, 

some other versions of QAA were selected to replace the QAA in the original Zhu & Yu (2013) algorithm, 

which include the QAA_v6 from IOCCG (2014), QAA_Mishra from Mishra et al. (2014), and QAA_hybrid 

from Jiang et al. (2019).  

The equations of each of the algorithm are provided as follows, where the bands in original equations 

have been replaced by the nearest OLCI wavebands: 

(1) Mannino et al. (2008) 

𝑎CDOM(443) = ln (
𝑅rs(490)/𝑅rs(560)−0.4363

2.221
) (−13.126)⁄    (2) 

𝑎CDOM(443) = ln (
𝑅rs(490)/𝑅rs(560)−0.4247

2.453
) (−13.586)⁄     (3) 

 

Where Eq. 2 is developed for MODIS, and Eq. 3 is developed for SeaWiFS. 

 

(2) Mannino et al. (2014) 

𝑎CDOM(443) = ln (
𝑅rs(413)/𝑅rs(560)−0.2678

3.406
) (−23.28)⁄    (4) 

𝑎CDOM(443) = ln (
𝑅rs(413)/𝑅rs(665)−0.7857

56.59
) (−31.79)⁄    (5) 

 

𝑎CDOM(443) = exp[−3.664 − 1.291 ∙ ln(𝑅rs(443)) + 1.105 ∙ ln(𝑅rs(560))]  (6) 

𝑎CDOM(443) = exp[−3.379 − 1.1513 ∙ ln(𝑅rs(443)) + 1.006 ∙ ln(𝑅rs(560))] (7) 

 

Where Eq. 4 is a band-ratio algorithm developed for MODIS, Eq. 5 a is band-ratio algorithm developed for 

SeaWiFS, Eq. 6 is a multiple linear regression (MLR) algorithm developed for MODIS, Eq. 7 is a multiple 

linear regression (MLR) algorithm developed for SeaWiFS. 

 

(3) Ficek et al. (2011) 

𝑎CDOM(440) = 3.65[𝑅rs(560)/𝑅rs(665)]
−1.93    (8) 

 

(4) Shanmugam (2011) 

𝑎CDOM(440) = 𝑎CDOM(350) ∙ 𝑒
(−𝑆(440−350)−𝛾0)   (9) 

𝛾0 =
𝑎CDOM(350)−(1/𝛾)

𝑎CDOM(350)+(1/𝛾)
      (10) 

𝑆 = 0.0058 × (
𝑎CDOM(412)

𝑎CDOM(350)
)−0.9677    (11) 

𝛾 = 2.9332 × (
𝑎CDOM(412)

𝑎CDOM(350)
)−0.7506    (12) 
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𝑎CDOM(350) = 0.5567 × (
𝑅rs(443)

𝑅rs(560)
)−2.0421    (13) 

𝑎CDOM(412) = 0.1866 × (
𝑅rs(443)

𝑅rs(560)
)−1.9668    (14) 

 

(5) Brezonik et al. (2015) 

𝑎CDOM(440) = exp[2.038 − 0.832 × ln (
𝑅rs(510)

𝑅rs(754)
)]   (15) 

 

(6) Mabit et al. (2022) 

𝑎CDOM(440) = 20 × log10(
𝑅rs(665)

𝑅rs(560)
+ 1)1.8    (16) 

 

(7) Zhu & Yu (2013) 

𝑟rs(𝜆) =
𝑅rs(𝜆)

0.52+2.1𝑅rs(𝜆)
      (17) 

𝑢(𝜆) = 1 − exp(
−6.807𝑟rs(𝜆)

1.186

0.31−𝑟rs(𝜆)
)     (18) 

𝑎(560) = 𝑎w(560) + 10−1.169−1.468𝑥+0.274𝑥
2
    (19) 

𝑥 = log10(
𝑅rs(443)+𝑅rs(490)

𝑅rs(560)+2
𝑅rs(665)

𝑅rs(490)
𝑅rs(665)

)     (20) 

𝑏bp(560) =
𝑢(560)×𝑎(560)

1−𝑢(560)
− 𝑏bw(560)     (21) 

𝑏bp(443) = 𝑏bp(560)(
560

443
)𝑌     (22) 

𝑌 = 2.2(1 − 1.2exp(−0.9
𝑟rs(443)

𝑟rs(560)
))     (23) 

𝑎(443) =
(1−𝑢(443))(𝑏bw(443)+𝑏bp(443))

𝑢(443)
     (24) 

𝑎p(443) = 0.63𝑏bp(560)
0.88     (25) 

𝑎CDOM(443) = 𝑎(443) − 𝑎w(443) − 𝑎p(443)    (26) 

 

Where, rrs is the remote sensing reflectance just below water surface, aw is the absorption coefficient of 

pure water (Pope & Fry, 1997; Kou et al., 1993), bbw is the backscattering coefficient of pure water 

(Zhang et al., 2009). In this report, we used aw(560)=0.062 m-1, bbw(560)=0.000779 m-1. 

 

(8) Zhu & Yu (2013) with QAA_v6 

The QAA_v6 uses Rrs(665) to distinguish clear and turbid waters (IOCCG, 2014). 

𝑟rs(𝜆) =
𝑅rs(𝜆)

0.52+1.7𝑅rs(𝜆)
      (27) 



 

 

Technical note: CDOM algorithm development for global inland waters 

Reference: CCI-LAKES2-0006-TN - Issue 1.2 – 08/12/2022  
Open/Public/Público © 2019 CLS. All rights reserved. Proprietary and Confidential.  

 

14/28 

 

𝑢(𝜆) =
−0.089+√0.0892+4×0.1245×𝑟𝑟𝑠(𝜆)

2×0.1245
     (28) 

If Rrs(665) < 0.0015 sr-1, 560 nm is selected as the reference band (𝜆0): 

𝑎(𝜆0) = 𝑎(560) = 𝑎w(560) + 10−1.146−1.366𝑥−0.469𝑥
2
    (29) 

𝑥 = log10(
𝑟rs(443)+𝑟rs(490)

𝑟rs(560)+5
𝑟rs(665)

𝑟rs(490)
𝑟rs(665)

)     (30) 

𝑏𝑏𝑝(𝜆0) = 𝑏bp(560) =
𝑢(560)×𝑎(560)

1−𝑢(560)
− 𝑏bw(560)    (31) 

 

If Rrs(665) >= 0.0015 sr-1, 665 nm is selected as the reference band:  

𝑎(𝜆0) = 𝑎(665) = 𝑎w(665) + 0.39(
𝑟𝑟𝑠(665)

𝑟𝑟𝑠(443)+𝑟𝑟𝑠(490)
)1.14   (32) 

𝑏𝑏𝑝(𝜆0) = 𝑏bp(665) =
𝑢(665)×𝑎(665)

1−𝑢(665)
− 𝑏bw(665)    (33) 

Where aw(665)=0.427 m-1, bbw(665)=0.000372 m-1. After obtaining the 𝑎(𝜆0) and 𝑏𝑏𝑝(𝜆0), a(443) is 

estimated using the following equations: 

𝑌 = 2.0(1 − 1.2exp(−0.9
𝑟rs(443)

𝑟rs(560)
))     (34) 

𝑏bp(λ) = 𝑏bp(𝜆0)(
𝜆0

𝜆
)𝑌      (35) 

𝑎(443) =
(1−𝑢(443))(𝑏bw(443)+𝑏bp(443))

𝑢(443)
     (36) 

Finally, aCDOM(443) is estimated using Eqs. 25 – 26. 

 

(9) Zhu & Yu (2013) with QAA_Mishra 

𝑟𝑟𝑠 and 𝑢 are calculated using Eqs. 27 – 28, 709 nm is selected as the reference band (Mishra et al., 

2014): 

𝑎(𝜆0) = 𝑎(709) = 𝑎w(709) + 10−0.7153−2.054𝑥−1.047𝑥
2
   (37) 

𝑥 = log10(
0.01×𝑟rs(443)+𝑟rs(620)

𝑟rs(709)+0.005
𝑟rs(620)

𝑟rs(443)
𝑟rs(620)

)     (38) 

𝑏𝑏𝑝(𝜆0) = 𝑏bp(709) =
𝑢(709)×𝑎(709)

1−𝑢(709)
− 𝑏bw(709)    (39) 

Where aw(709)=0.816 m-1, bbw(709)=0.000283 m-1. After obtaining the 𝑎(𝜆0) and 𝑏𝑏𝑝(𝜆0), the a(443) 

and bbp(560) are calculated using Eqs. 34 – 36, and finally aCDOM(443) is estimated using Eqs. 25 – 26. 

 

(10) Zhu & Yu (2013) with QAA_hybrid 

The QAA_hybrid consists of QAA_v5 for clear waters and QAA_turbid for turbid waters, and the MCI is used 

to distinguish clear and turbid waters (Jiang et al., 2019):  

MCI = 𝑅𝑟𝑠(709) − 𝑅𝑟𝑠(665) − [
(709−665)

(754−665)
(𝑅𝑟𝑠(754) − 𝑅𝑟𝑠(665))]  (40) 
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If MCI <= 0.0010 sr-1, 560 nm is selected as reference (QAA_v5), Eqs. 27 – 31, 34 – 36 are used to 

estimate bbp(560) and a(443). 

If MCI > 0.0010 sr-1, 754 nm is selected as reference band (QAA_turbid): 

𝑎(754) ≈ 𝑎𝑤(754)       (41) 

𝑏𝑏𝑝(754) =
𝑢(754)×𝑎(754)

1−𝑢(754)
− 𝑏𝑏𝑤(754)     (42) 

𝑌 = −372.99𝛽2 + 37.286𝛽 + 0.84      (43) 

𝛽 = log[𝑢(754)/𝑢(779)]      (44) 

Where aw(754)=2.868 m-1, bbw(754)=0.000217 m-1. Eqs. 35 – 36 are used to estimate bbp(560) and 

a(443).  

Finally, aCDOM(443) can be estimated using Eqs. 25 – 26. 

 

(11) Wang et al. (2017) 

𝑟rs(𝜆) =
𝑅rs(𝜆)

𝛼(𝜆)+𝛽(𝜆)𝑅rs(𝜆)
      (45) 

𝛼(𝜆) = 0.3638 + 8.776 × 10−4𝜆 − 9.193 × 10−7𝜆2 + 3.17 × 10−10𝜆3   (46) 

𝛽(𝜆) = 1.357 + 8.608 × 10−4𝜆 − 6.347 × 10−7𝜆2     (47) 

𝑢 is calculated using Eq. 28, and 681 nm is selected as reference band: 

𝑎(𝜆0) = 𝑎(681) = 𝑎w(681) + 0.9398𝑥2 + 0.865𝑥 − 0.0852   (48) 

𝑥 =
𝑅rs(681)

𝑅rs(490)
      (49) 

𝑏𝑏𝑝(𝜆0) = 𝑏𝑏𝑝(681) =
𝑢(681)×𝑎(681)

1−𝑢(681)
− 𝑏𝑏𝑤(681)    (50) 

𝑌 = 1.75𝑏𝑏𝑝(681)
−0.05      (51) 

Where aw(681)=0.472 m-1, bbw(681)=0.000336 m-1. bbp(560) and a(443) are estimated using Eqs. 35 – 

36. ap(443) is estimated as follows: 

𝑎𝑝(443) = 4.8024𝑏𝑏𝑝(681)
0.8055     (52) 

Finally, aCDOM(443) can be estimated using Eq. 26. 

 

(12) MDN 

The mixture density network (MDN) is a machine learning method proposed by Pahlevan et al. (2022), 

which is able to retrieve chlorophyll-a, total suspended matters (TSM) and aCDOM(440) from Rrs 

simultaneously. It is trained using in-situ data from global inland and coastal waters, which has a large 

overlap with the in-situ data used in this report. In the algorithm assessment in this report, the public 

available MDN model is directly used without any re-training. 
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3.2 Accuracy assessment 

The median absolute percentage difference (MAPD), the root mean square difference (RMSD), and Bias 

were used to evaluate the aCDOM estimation results, with equations as follows: 

MAPD = 𝑚𝑒𝑑𝑖𝑎𝑛(|
𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖

𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖
| ∙ 100%)    (53) 

RMSD = √
∑ [𝑙𝑜𝑔10(𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖)−𝑙𝑜𝑔10(𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖)]

2𝑁
𝑖=1

𝑁
    (54) 

Bias = 10𝑌 − 1, 𝑌 =
∑ [𝑙𝑜𝑔10(𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖)−𝑙𝑜𝑔10(𝑋𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑,𝑖)]
𝑁
𝑖=1

𝑁
   (55) 

where, Xmeasured is in situ aCDOM(440) value, Xestimated is the corresponding estimated aCDOM(440) value, N is 

the number of data points. The slope and R2 of regression in log10 scale were also used for the 

assessment. It should be noted that negative estimates or estimates which higher than 500 m-1 are 

considered as invalid estimates and excluded in the error calculations.  

 

3.3 Algorithm assessment results 

Most empirical algorithms underestimate aCDOM when applied to the global dataset (Figure 3a – 3j), 

especially in the aCDOM(440) > 1 m-1 range. The two algorithms from Mannino et al. (2008) overestimate 

aCDOM in the aCDOM(440) < 0.1 m-1 range  and underestimate in high aCDOM(440) range, with fewer than 

4000 valid estimates (Figure 3a, 3b). The band ratio (BR) algorithms from Mannino et al. (2014) show 

similar results to Mannino et al. (2008), but with fewer valid estimates (N < 3000) (Figure 3c- 3d). The 

multi linear regression (MLR)-based algorithms from Mannino et al. (2014) obtain more valid estimates 

(> 5000) and show good results in the low aCDOM(440) range, but they clearly underestimate in the high 

aCDOM(440) range (Figure 3e – 3f). The results from Ficek et al. (2011) and Mabit et al. (2022) show 

similar results, and overall, they perform best among the tested empirical algorithms, with slopes higher 

than 0.5, R2 higher than 0.4 and MAPD lower than 55% (Figure 3g, 3j). The results of those two algorithms 

generally align with the 1:1 line, but they show large uncertainties especially in low aCDOM(440) range. 

Results from the algorithm by Shanmugam (2011) also show good estimations in the low aCDOM(440) 

range, but underestimate in the high aCDOM(440) range (Figure 3h). Results from Brezonik et al. (2015) 

shows clear overestimations with a Bias of 2.4 (Figure 3i). 

All semi-analytical algorithms show overestimations of aCDOM(440), especially in the high aCDOM(440) range 

(Figure 3k – 3o). Among the five tested semi-analytical algorithms, the Zhu & Yu (2013) with QAA_v6 

shows fair results with R2=0.52 and MAPD=73.0%, but with systematic bias of 0.8 (Figure 3l). The original 

Zhu & Yu (2013) algorithm, the Zhu & Yu (2013) with QAA_Mishra, the Zhu & Yu (2013) with QAA_hybrid, 

and the Wang et al. (2017) show clear overestimations with bias higher than 1 (Figure 3k, 3m – 3o), 

especially in high aCDOM(440) range.    

The machine learning method (i.e., MDN) shows the best aCDOM(440) estimates compared to the other 

tested algorithms, with a MAPD of 31.9% and bias of -0.1 (Figure 3p). However, we note that there is a 

large overlap in the training dataset of the MDN model and this evaluation.  

Generally, estimation accuracy is lower for high aCDOM(440) than in the low aCDOM(440) range based on 

results from the published algorithms. 
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Figure 3. Comparison between in situ and estimated aCDOM(440) using previously published algorithms. 

Colour and white lines indicate the density of data points. 

 

3.4 Algorithm comparison  

Figure 4 shows a comparison of algorithm performance separated by the most similar OWT for each 

sample, where colour indicates the rank of the error index, having lower numbers for better performance 

(Slope and R2 closer to 1, RMSD, MAPD and Bias closer to 0). MDN performed best for OWT2, 4, 5, 6, 7, 

9, 11 and 12. Again, it should be noted that many of the compiled data have been used in MDN training. 

When comparing the rest of the algorithms, it is found that: 

• Ficek et al. (2011) is ranked high for OWT 1, 2, 4, 6 and 8.  

• Shanmugam (2011) is ranked high for OWT 1, 9, 10, and 13.  

• Mabit et al. (2022) is ranked high for OWT 2, 4, 6, 8, and 11.  
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• The original Zhu & Yu (2013) is ranked high for OWT 5 and 12.  

• The Zhu & Yu (2013) with QAA_v6 is ranked high for OWT 1, 5, 7 and 12.   

• The Maninno et al. (2008, 2014) algorithms are ranked high for OWT 3 and 10. 

 

 

Figure 4. Rank of each error index for all the assessed algorithms for each OWT.  

 

Some of the OWTs, e.g., OWT 4, 5, 8 and 11, even the algorithm performed the best still shows large 

uncertainties in aCDOM(440) estimations (Figure 5).  The most challenging estimation is for OWT 11 (Figure 

5d), which includes CDOM-rich waters (Figure 2 in this report) in the optical water type definition in 

Spyrakos et al. (2018). 
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Figure 5. The estimated aCDOM(440) results from Mabit et al. (2022) for OWT 4, 8 and 11, from Zhu & Yu 

(2013) with QAA_v6 for OWT 5. 
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4 Algorithm recalibration 

4.1 Algorithm selection 

In total, 15 published algorithms were included in recalibration (Table 4). These include single band 

algorithms, band ratio algorithms, and combinations thereof. Some of the algorithm (1, 3, 4, 5, 9, 10, 11 

in Table 4) were already assessed in section 3 of this report, while others (2, 6, 7, 8, 12, 13, 14, 15 in 

Table 4) were included in addition to the earlier set. This is because the original algorithms target aCDOM 

at other wavebands, for which fewer in situ data are available. For example, the algorithms from D’sa & 

Miller (2003) (6, 7, 8 in Table 4) estimate aCDOM(412), while Griffin et al. (2011) (15 in Table 4) estimate 

aCDOM(400). Their formulas are used in the recalibration to estimate aCDOM(440) in this report. The 

coefficients a, b and c in Table 4 were optimised using the non-linear square fitting in R with no pre-

defined coefficients bounds. The last column of Table 4 indicates the abbreviation of each model, and 

they are used in the graphs in this report. 

 

Table 4. List of selected algorithms for recalibration and corresponding references. 

No. Formula Reference Abbreviation 

1 𝑎CDOM(440) = exp(𝑎 ∙ ln(𝑅rs(443))
+ b ∙ ln(𝑅rs(560)) + 𝑐) 

Mannino et al., 2014 M14-MLR-cal 

2 𝑎CDOM(440) = 𝑎(𝑅rs(510)/𝑅rs(665)) + 𝑏 Castillo et al., 2008 C08-cal 

3 𝑎CDOM(440) = 𝑎(𝑅rs(443)/𝑅rs(560))
𝑏 Shanmugam, 2011 S11-cal 

4 𝑎CDOM(440) = 𝑎(𝑅rs(560)/𝑅rs(665))
𝑏 Ficek et al., 2011, 

Kutser et al., 2005, 

Kutser et al., 2009 

F11-cal 

5 
𝑎CDOM(440) = a × log10(

𝑅rs(665)

𝑅rs(560)
+ 1)𝑏 

Mabit et al., 2022, 

Menken et al., 2006 

M22-cal 

6 
𝑎CDOM(440) = 10

(𝑎×log(
𝑅rs(413)
𝑅rs(510)

)+𝑏)
 

D’sa & Miller, 2003 D03-413-cal 

7 
𝑎CDOM(440) = 10

(𝑎×log(
𝑅rs(443)
𝑅rs(510)

)+𝑏)
 

D’sa & Miller, 2003 D03-443-cal 

8 
𝑎CDOM(440) = 10

(𝑎×log(
𝑅rs(510)
𝑅rs(560)

)+𝑏)
 

 

D’sa & Miller, 2003 D03-510-cal 

9 
𝑎CDOM(440) = exp(𝑎 × ln(

𝑅rs(510)

𝑅rs(754)
) + 𝑏) 

Brezonik et al., 2015 B15-cal 

10 

𝑎CDOM(440) = ln(

𝑅rs(490)
𝑅rs(560)

+ 𝑎

𝑏
) 𝑐⁄  

Mannino et al., 2008 M08-cal 

11 

𝑎CDOM(440) = ln(

𝑅rs(413)
𝑅rs(560)

+ 𝑎

𝑏
) 𝑐⁄  

Mannino et al., 2014 M14-BR-cal 

12 𝑎CDOM(440) = 𝑎(𝑅rs(665)/𝑅rs(490))
+ 𝑏(𝑅rs(560)/𝑅rs(490)) + 𝑐 

Liu et al., 2021 L21-cal 
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13 
𝑎CDOM(440) = exp(𝑎

𝑅rs(443)

𝑅rs(665)
+ 𝑏

𝑅rs(490)

𝑅rs(665)
+ 𝑐) 

Olmanson et al., 2016 O16-cal 

14 
𝑎CDOM(440) = exp(𝑎

𝑅rs(665)

𝑅rs(560)
+ 𝑏

𝑅rs(865)

𝑅rs(560)
+ 𝑐) 

 

Olmanson et al., 2020 O20-cal 

15 
𝑎CDOM(440) = exp(𝑎 ×

𝑅𝑟𝑠(560)

𝑅𝑟𝑠(490)
+ 𝑏 × 𝑅𝑟𝑠(665)

+ 𝑐) 

Griffin et al., 2011 G11-cal 

 

 

4.2 Algorithm recalibration results 

Figure 6 shows the results of algorithm recalibration.  

The recalibrated algorithm of Mannino et al. (2008) shows slight improvement compared to the original 

formulation (MAPD: 63.8% vs 65.0%), while all show clear underestimations, especially in the high 

aCDOM(440) range (Figure 6a).  

Both the recalibrated band ratio and multiple linear regression models of Mannino et al. (2014) show 

slightly worse results compared to the original algorithms: the recalibrated band ratio algorithm shows 

clear underestimations (Figure 6b), and the multiple linear regression algorithm shows clear 

overestimations (Figure 6c).  

The calibrated models of Ficek et al. (2011), Shammugam (2011) and Brezonik et al. (2015) show better 

estimations compared to the original formulations, with bias forced to zero, but remaining large 

uncertainty in the high aCDOM(440) range (Figure 6d – 6f). 

The recalibration of Mabit et al. (2022) shows slightly worse results compared to the original model, and 

overestimated aCDOM(440), especially in the low aCDOM(440) range (Figure 6g).  

The recalibration of D’sa & Miller (2003) shows similar accuracy with the above-mentioned algorithms, 

with MAPD ranging 55.6% to 65.5% (Figure 6i – 6k).  

The recalibration of Griffin et al. (2011) shows clear overestimations in the low aCDOM(440) range.  

The rest of the recalibrated models show either larger errors (Figure 6h, 6l, 6m) or small number of valid 

estimates (Figure 6n), which may due to the failure of model recalibration as the coefficients are not 

bounded in the recalibration, or the small number of available Rrs(865).  
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Figure 6. Results of recalibrated algorithms, where the formula of models are listed in Table 4. 
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4.3 Algorithm comparison 

Figure 7 shows the comparison of all original (section 3) and recalibrated (section 4) algorithms, where 

colour indicates the rank of each error index, i.e., slope and R2 closer to 1, RMSD, MAPD and Bias closer 

to 0, the higher of the rank (red with lower number). It should be noted that the number of valid estimates 

is also considered in the algorithm comparison. 

In terms of each OWT, it is found that: 

OWT 1: the original and calibrated Shanmugam (2011), MDN, the Zhu & Yu (2013) with QAA_v6, and 

the calibrated Mannino et al. (2014) MLR algorithms perform better than the others.  

OWT 2: the MDN, the original and calibrated Ficek et al. (2011), and the original Mabit et al. (2022), 

the calibrated D’sa & Miller (2003) algorithms performed better than others. The calibrated Olmanson 

et al. (2020) is ranked high as well, but with less valid estimates. 

OWT 3: the MDN, the two original Mannino et al. (2008) and four original Mannino et al. (2014) and 

the original Shanmugam (2011) algorithms perform better than others. 

OWT 4: The MDN, the original and calibrated Ficek et al. (2011), the original and calibrated Mabit et 

al. (2022) perform better than others. 

OWT 5: The MDN, the calibrated Mannino et al. (2014) MLR, the calibrated Brezonik et al. (2015) and 

the calibrated Ficek et al. (2011) perform better than others. The calibrated Olmanson et al. (2020) 

is ranked high as well, but with less valid estimates. 

OWT 6: The MDN, the original and calibrated Mabit et al. (2022), the original Ficek et al. (2011) 

perform better than others. 

OWT 7: The MDN, the calibrated Mannino et al. (2014) MLR, the calibrated Liu et al. (2021), the Zhu 

& Yu (2013) with QAA_v6 and original Mabit et al. (2022) algorithms perform better than others. 

OWT 8: The MDN, the original Mabit et al. (2022), the original Ficek et al. (2011), and the calibrated 

Griffin et al. (2011) algorithms perform better than others. 

OWT 9: The MDN, the calibrated Ficek et al. (2011), the original Shanmugam (2011) and the 

calibrated Griffin et al. (2011) algorithms perform better than others. 

OWT 10: The calibrated and original Shanmugam (2011), and the calibrated D’sa & Miller (2003) 

algorithms perform better than the others. 

OWT 11: The MDN, the original and calibrated Mabit et al. (2022), the calibrated Mannino et al. 

(2014) MLR, the calibrated Ficek et al. (2011) algorithms perform better than others. 

OWT 12: The MDN, the Mannino et al. (2014) MLR, the calibrated Ficek et al. (2011), and the 

calibrated Brezonik et al. (2015) algorithms perform better than others. The calibrated Olmanson et 

al. (2020) is ranked high as well, but with less valid estimates. 

OWT 13: The original and calibrated Shanmugam (2011), the two original Mannino et al. (2014) MLR, 

and the MDN algorithms perform better than others. 
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Figure 7. Comparison of performance for all original and recalibrated algorithms. 
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5 Conclusions and recommendation 

16 previously published algorithms and 15 recalibrated algorithms for estimating aCDOM(440) are 

evaluated in this report. Based on these first results, it is possible to estimate aCDOM(440) in medium-low 

value ranges (e.g., < 1 m-1) from several published or recalibrated algorithms (e.g., Shanmugam (2011), 

Ficek et al. (2011)), but results show that high uncertainties in estimating aCDOM(440) in high value ranges 

(e.g., > 1 m-1) remains from the published or recalibrated algorithms, especially for OWT 8, 11, and 12.  

Model recalibrations showed slightly improvement in aCDOM(440) estimations for some OWTs (e.g., OWT 

5, 6, 10, 11 and 12, see Figure 7), but they cannot address the problem of high uncertainties in estimating 

aCDOM(440) in high value ranges. The difficulty of accurately estimating aCDOM(440) in high value ranges is 

probably due to: (1) the limited remote sensing signal from water because of strong absorption of CDOM, 

which are not able to detect the variations of aCDOM(440) in the water, (2) the fact that phytoplankton 

pigment and suspended matter may mask the aCDOM spectral signature, thus decreasing algorithm 

specificity and increasing algorithmic uncertainty.  

From the comparison of different algorithms in section 4.3, it is found that the original or the calibrated 

Shanmugam (2011), Ficek et al. (2011), Mabit et al. (2022), Mannino (2014) MLR, and the calibrated 

Brezonik et al. (2015) algorithms are frequently ranked high, which means they have higher accuracy in 

aCDOM(440) estimation than the other algorithms. Further analysis reveals that:  

• For OWT 4, 6, 8 and 11, either the Ficek et al. (2011) or Mabit et al. (2022) are ranked high, and 

the common feature of these two algorithms is that both use the band ratio Rrs(560)/Rrs(665). 

Therefore, the green-red band ratio algorithm is more likely to diagnostically capture the 

aCDOM(440) variations for those water types. 

• For OWT 1, 3, 10 and 13, algorithms which use short wavelengths (blue to green) are ranked high 

(e.g., Shanmugam (2011), Maninno et al. (2014) MLR, D’sa & Miller (2003)). Therefore, blue to 

green wavelengths are useful in aCDOM(440) estimation for those water types where phytoplankton 

abundance is low. Although OWT-1 has high reflectance in NIR, the blue to green wavelengths still 

show ability for aCDOM(440) estimation. 

• NIR wavebands shows potential in aCDOM(440) estimations for OWT 5 and OWT 12, for which the 

algorithms from Brezonik et al. (2015) and Olmanson et al. (2020) are ranked high.  

 

To inform next steps, there are several possible ways to improve the accuracy of aCDOM(440) estimations, 

which include: 

• Apply a linear calibration to the results of published algorithms, for example, the Zhu & Yu (2013) 

with QAA_v6 shows systematic overestimation of aCDOM(440), a linear function to shift the 

estimations and make it more accurate would be useful, especially in medium-low aCDOM(440) 

ranges (will be done within the CDOM option). 

• Select the best algorithm for each OWT and use weighted blending of results to adjust in ranges 

where an observation bears similarity to more than one OWT (will be carried out within the CDOM 

option). 

• Recalibrate the algorithms using satellite-derived reflectance, which is needed to eliminate 

systematic bias from atmospheric correction in the aCDOM(440) retrieval accuracy (will be done 

within the CDOM option). 

• Bound the range of coefficients to be recalibrated in model recalibration process to prevent losing 

sensitivity of original algorithms to aCDOM(440) variations (will be done within the previous activity 

using satellite-derived reflectance). 

• Quantify the uncertainties from each algorithm (ideally per OWT), then flag or exclude estimates 

where uncertainties exceed acceptable thresholds (will be carried out within the CDOM option). 
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• Develop new aCDOM(440) algorithms, making use of increased in situ datasets, especially for 

CDOM-rich waters (depending on available resources). 

 

Based on the current results of assessment of published and recalibrated algorithms using in situ 

observations, the current recommendation is to consider: 

• the original algorithm of Shanmugam (2011) for OWT 1, 3, 10 and 13. 

• the original algorithm of Ficek et al., (2011) for OWT 2, 4, and 9. 

• the calibrated MLR algorithm of Mannino et al. (2014) for OWT 5, 7 and 12.  

• the calibrated Mabit et al. (2022) algorithm for OWT 6, 8 and 11.  

The MDN should be considered as well, after carefully interpreting independent validation results. The 

results of the modelled aCDOM(440) when switching between the recommended algorithms based on the 

most similar OWT for each sample is shown in Figure 8, with lower MAPD (42.5%) and RMSD (0.4) than 

published and recalibrated algorithms.  

 

Figure 8.  In situ vs modelled aCDOM(440) when combing the recommended algorithms. (a) Data shown as 

density plot, (b) data shown for each OWT.  
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