

Regional Modification Of Air-Sea CO₂ Fluxes Due To The Inclusion Of Quantified Ocean Biological Processes Within Satellite-based Assessments

Daniel J. Ford¹, Gemma Kulk², Shubha Sathyendranath², Mayra Rodriguez², David Moffat², Heather Bouman³, Galen McKinley⁴, Amanda Fay⁴, The Heimdel⁴, Marion Gehlen⁵, Frederic Chevallier⁵ and Jamie D. Shutler¹

University of Exeter, UK.² Plymouth Marine Laboratory, UK.³ University of Oxford, UK.⁴ Columbia University and Lamont-Doherty Earth Observatory, USA. ⁵ Laboratoire des Sciences du Climat et de l'Environnement, France.

The UN and International Oceanographic Commission (IOC) decadal roadmap for Integrated Ocean Carbon Research (IOC-R) highlighted that the role of ocean biology was a key issue to understanding the global ocean CO_2 sink (Arico et al. 2021).

The global ocean sink can be estimated through observation-based approaches that interpolate in situ fugacity of CO_2 in seawater (f CO_2 (sw)) using a synergy of satellite and reanalysis observations with sophisticated interpolation techniques.

These approaches generally use chlorophyll-a as a proxy for the biological influence on fCO_{2 (sw)}. Recent work shows the inclusion of quantified biological processes such as net primary production or net community production, modified the regional air-sea CO₂ fluxes within the South Atlantic Ocean (Ford et al. 2022). The impact has not been investigated on the global scale.

2) Methods

The University of Exeter Feed Forward Neural Network with uncertainties (UExP-FNN-U; Ford et al. 2024) as submitted to the Global Carbon Budget (Friedlingstein et al. 2025) was used to interpolate fCO_{2 (sw).} The standard setup of the UExP-FNN-U uses physical parameters including sea surface temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), dry mixing ratio of CO_2 in atmosphere (xCO_{2 (atm)}) and anomalies of the 4 variables to estimate $fCO_{2 (sw)}$. This setup acts as our 'baseline run'.

We then ran sensitivity analyses, where we include a spatially and temporally complete chlorophyll-a (Ford et al. in prep) or net primary production product (Kulk et al. 2020) within the UExP-FNN-U. These complete datasets are based on the climate quality Ocean Colour Climate Change Initiative (OC-CCI) dataset.

The differences in the fCO_{2 (sw)} produced by the three variants of the UExP-FNN-U were compared, and the resulting accuracy and precision with respect to an independent subset of the Surface Ocean CO₂ Atlas (SOCAT) in situ $fCO_{2 (sw)}$ assessed.

Global air-sea CO₂ fluxes were calculated with a comprehensive uncertainty budget (Ford et al. 2024) and differences in global ocean CO_2 sink compared, as well as any changes in the uncertainties.

In this work, a sensitivity analysis was conducted using global fCO_{2 (sw)} interpolation approaches, where the effect of including the increasingly complex biological contributions was evaluated at the global and regional scale.

3) Results

Variants with chlorophyll-a or net primary production showed improvements in the precision ~1.4 µatm (5 to 7%) (reduction in root mean square difference; RMSD) when compared to in situ observations.

Including chlorophyll-a showed an **improved accuracy** (reduced bias; **Table 1**)

Table 1: Accuracy and precision estimates of the UExP-FNN-U variants with respect to an independent subset of the SOCAT observations (N = 17,351; ~5%).

UExP-FNN-U variant	Bias (Accuracy; µatm)	Root mean square difference (RMSD; µatm)
Physics only	0.3	20.0
Chlorophyll-a	-0.1	18.6
Net primary production	-0.6	18.8

Regional differences in the fCO_{2 (sw)} were observed between the physics only and biological variants. Negative differences generally observed in the Southern Ocean (south of 40 °S) but a notable positive difference in the subtropical convergence (green box; Figure 1). Eastern boundary upwelling regions showed **negative differences** (red box; Figure 1).

Differences were generally smaller in magnitude for the net primary production compared to chlorophyll-a variant (compare Figure 1b to 1a).

Further analysis of regional air-sea CO₂ fluxes and the expansion to two more global fCO_{2 (sw)} interpolation approaches is in progress (LDEO-pCO2residual and CMEMS-FFNN).

biological variants compared to the physics only.

Figure 2: The global ocean CO_2 sink for the variants of the UExP-FNN-U. Coloured banding indicates the 1 sigma uncertainty. +ve indicates atmosphere to ocean exchange (a CO_2 sink)

Acknowledgements

This work was supported by funding from the European Space Agency under the projects 'Satellite-based observations of Carbon in the Ocean: Pools, Fluxes and Exchanges' (SCOPE) and 'Ocean Carbon for Climate' (OC4C).

https://doi.org/10.5194/essd-17-965-2025); Kulk et al. (2020; http://dx.doi.org/10.3390/rs12050826); Ford et al. (in prep) - Decadal global and polar wintertime chlorophyll-a data record from satellite and Argo observations;