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Anthropogenic Water Use (CCI-AWU) 

1. Introduction 

1.1. The CCI-AWU Project 

The closure of the Earth’s water cycle (as well as the energy balance and the carbon cycles) through satellite 

Earth Observation (EO) represents one of the outstanding scientific challenges highlighted by the Global 

Climate Observing System (GCOS). Required standards of accuracy are fixed to 5% and annual timescale. To 

this end, a suite of essential climate variables (ECVs) has been defined to understand the evolution of climate 

and to assess the potential derived risks. However, if targets at annual timescale can generally be reached, 

larger uncertainties are observed for sub-annual and sub-continental time and spatial scales, respectively 

(Dorigo et al., 2021; Rodell et al., 2015). In this context, the development of an ECV that includes information 

on anthropogenic water use (AWU) can help in advancing the proper closure of the water cycle at higher 

spatial and temporal scales. In the ESA Climate Change Initiative Anthropogenic Water Use (CCI-AWU) 

precursor project, AWU is more specifically intended as agricultural water allocated for irrigation, which 

represents the largest anthropogenic water use, thus making irrigation the most impactful human activity on 

the hydrological cycle. FAO (2016) estimated that irrigation, worldwide, accounts for more than 70% of water 

withdrawn from the surface (i.e., rivers, lakes) and subsurface (i.e., groundwater) water sources and these 

estimates are expected to increase in the near future due to an increase in population and in food production, 

especially over arid and semi-arid regions (McDermid et al., 2023). In this context, the main data source 

identified by GCOS for tracking AWU is FAO’s AQUASTAT. However, AQUASTAT provides survey-based 

irrigation estimates that do not meet the GCOS requirements, i.e., data are provided on a 5-year interval 

instead of yearly and are available every 2-3 years.  

The overarching objective of the Climate Change Initiative – Anthropogenic Water Use (CCI-AWU) precursor 

project is to derive long-term (i.e., at least twenty years) AWU time series for selected regions using several 

approaches exploiting remote sensing observations, as a proof-of-concept of the feasibility towards a proper 

AWU ECV product.  

The CCI-AWU project is led by a consortium coordinated by CNR-IRPI and includes the following institutions: 

1. Vienna University of Technology (TU Wien) (TUWIEN) 

2. KU Leuven, Department of Earth and Environmental Sciences, Division of Soil and Water 

Management (KULeuven) 

3. University of Perugia (UNIPG) 

4. Politecnico di Milano, Department of Civil and Environmental Engineering (POLIMI) 

 

1.2. Scope of this Report 

This Product User Guide (PUG) describes the specifications of the long-term AWU datasets produced within 

the framework of the CCI-AWU project, covering four key study areas: the CONUS (Continental United 

States), India, the Ebro Basin (in Spain), and the Murray-Darling Basin (in Australia). It provides a detailed 

overview of the dataset characteristics, discusses their interpretation and uncertainties, and summarizes the 
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validation results against in situ data and intercomparison. Key information regarding the study areas, the 

algorithms used for dataset generation—namely the SM-based (Soil Moisture-based) Inversion, SM-based 

Delta, and Model-observation integration based on Noah-MP approaches—as well as the main input 

datasets, is also included.  

These datasets are experimental and should be used accordingly. This document is intended for scientists 

and modelers interested in large-scale, long-term irrigation estimates, particularly those integrating such 

data into hydrological, land surface, and climate models. For a comprehensive description of the satellite and 

reference data, processing framework, and methodologies, please refer to the Algorithm Theoretical Basis 

Document (ATBD). Validation results based on in situ data, along with dataset intercomparisons, can be found 

in the D4 Product Validation and Algorithm Assessment Report (PVSAR) and the D6 Product Validation and 

Intercomparison Report (PVIR). 

1.3. Applicable Documents 

● Proposal. 

● Deliverable D2. Report explaining the criteria for selecting the test regions. 

● Deliverable D3. Algorithm Theoretical Baseline Document (ATBD). 

● Deliverable D4. Product Validation and Algorithm Selection Report (PVASR). 

● Deliverable D6. Product Validation and Intercomparison Report (PVIR). 

All deliverables mentioned here will be made publicly available at the following link: 

https://climate.esa.int/en/projects/anthropogenic-water-use/. 

  

https://climate.esa.int/en/projects/anthropogenic-water-use/
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2. Datasets Overview 

Table 1 provides an overview of the datasets produced within the CCI-AWU project at a 0.25° spatial 

resolution, detailing their temporal coverage and availability across the four study regions. 

Three distinct approaches were employed: SM-based Delta (Zaussinger et al., 2019; Zappa et al., 2021, 2022, 

2024), SM-based Inversion (Brocca et al., 2018; Jalilvand et al., 2019; Dari et al., 2020, 2022, 2023), and the 

Model-observation integration approach based on the Noah-MP v4.0.1 land surface model (Niu et al., 2011), 

coupled with a sprinkler irrigation scheme (Ozdogan et al., 2010) and overlaid with irrigated area maps 

derived from satellite observations. 

The "Dataset" column in Table 1 lists the various AWU datasets generated by each method, based on 

different SM and evapotranspiration (ET) input datasets. The red cells indicate regions where Model-

Observation Integration datasets are unavailable. The SM-based Inversion method uses five different SM 

datasets: CCI Combined, CCI Passive, Advanced Scatterometer (ASCAT), Soil Moisture and Ocean Salinity 

(SMOS), and Soil Moisture Active Passive (SMAP). The SM-based Delta method relies on three SM datasets 

(CCI Combined, CCI Passive, CCI Active) and two ET datasets (FLUXCOM, SSEBOP). The Model-observation 

integration (Noah-MP) method includes three different datasets using different irrigated area maps: one 

derived from Landsat observations (Teluguntla et al., 2023), referred to as "Landsat"; one based on the 

"Relative Bias" approach described in ATBD Section 5.2.1, referred to as "Method 1"; and another based on 

the "Multi-Resolution Analysis Approach" described in ATBD Section 5.2.2, referred to as "Method 2". 

 

Table 1: The AWU datasets with their time coverage and availability for each region 

Method Dataset Data availability CONUS 
Ebro 

basin 

Murray- 

Darling 

basin 

India 

SM-based Delta 

CCI Combined & FLUXCOM 2003-2020     

CCI Passive & FLUXCOM 
2003-2020     

CCI Active & FLUXCOM 
2003-2020     

CCI Combined & SSEBOP 
2003-2022     

CCI Passive & SSEBOP 
2003-2022     

CCI Active & SSEBOP 
2003-2022     

SM-based CCI Combined 
2003-2022     
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Inversion CCI Passive 
2003-2022     

ASCAT 
2003-2022     

SMOS 
2010-2022     

SMAP 
2015-2022     

Model-

observation 

integration 

(Noah-MP) 

Landsat 2010-2022     

Method 1 
2010-2022     

Method 2 
2010-2022     
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3. Structure and Format of the Products 

3.1. Data File Format and Naming Convention 

The data is stored in NetCDF format, following a standardized naming convention: 

AWU_<method>_<site>_<product>.nc 

● <method> refers to the dataset generation approach, which includes "SM_Delta" for the SM-based 

Delta method, "SM_Inversion" for the SM-based Inversion method, and "NoahMP" for the Model-

observation integration approach. 

● <site> identifies the four study regions: "CONUS" for the Contiguous United States, "Murray" for the 

Murray-Darling Basin, "Ebro" for the Ebro Basin, and "India". 

● <product> varies depending on the dataset type (SM data, ET data, and irrigated area maps) used. 

For the SM-based Delta method, products include "CCI_Combined_FLUXCOM", 

"CCI_Passive_FLUXCOM", "CCI_Active_FLUXCOM", "CCI_Combined_SSEBOP", 

"CCI_Passive_SSEBOP", and "CCI_Active_SSEBOP". For the SM-based Inversion method, products 

include "CCI_Combined", "CCI_Passive", "ASCAT", "SMOS", and "SMAP". For the Model-observation 

integration method, the products are "Landsat", "Method1", and "Method2". 

3.2. Variables 

● For the SM-based Inversion and SM-based Delta datasets: 

○ Irrigation [mm/month] 

● For the Model-observation integration (Noah-MP) datasets: 

○ IWU_ensmean [mm/month] 

○ IWU_uncertainty [mm/month] 

3.3. Coordinates 

● time: Represents the date of the irrigation data stored in the NetCDF file. The format is YYYY-MM-

DD, where YYYY is the four-digit year, MM is the two-digit month (ranging from 01 to 12), and DD 

corresponds to the last day of the respective month. 

● lon [degree]: Longitude coordinate. 

● lat [degree]: Latitude coordinate. 
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4. Datasets Characteristics  

4.1. Common Characteristics 

 

Table 2: Characteristics common to all irrigation datasets. 

Coordinate System  Geographic 

Datum WGS84 

File Format NetCDF 

Pixel Size 0.25° 

Temporal Frequency Monthly 

Units mm/month 

Fill Value NaN 

Scale Factor N/A 

Valid Range All values are valid 
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4.2. Characteristics of the CONUS Datasets 

Table 3: Characteristics of irrigation datasets of the CONUS region. 

File name Temporal 

extent 

Spatial 

extent 

Columns

/Rows 

File size Layer 1 Layer 2 

 

Temporal 

mask 

Data type 

AWU_SM_Delta_CONUS_CCI_Active_FLUXCOM 2003-2020 Lat:  

25.38°N – 

49.12°N 

Lon:  

-124.6°W – -

67.12°W 

231 (lon) / 

96 (lat) 

 

38.8 MB Irrigation N/A October-April float64 

AWU_SM_Delta_CONUS_CCI_Combined_FLUXCOM 2003-2020 38.3 MB 

AWU_SM_Delta_CONUS_CCI_Passive_FLUXCOM 2003-2020 38.8 MB 

AWU_SM_Delta_CONUS_CCI_Active_SSEBOP 2003-2022 41.4 MB 

AWU_SM_Delta_CONUS_CCI_Combined_SSEBOP 2003-2022 41.4 MB 

AWU_SM_Delta_CONUS_CCI_Passive_SSEBOP 2003-2022 41.4 MB 

AWU_SM_Inversion_CONUS_ASCAT 2007-2022 Lat:  

24.88°N – 

49.38°N 

Lon:  

-124.9°W –  

-66.88°W 

233 (lon) / 

99 (lat) 

17.7 MB Irrigation N/A October-April float32 

AWU_SM_Inversion_CONUS_CCI_Combined 2003-2022 22.2 MB 

AWU_SM_Inversion_CONUS_CCI_Passive 2003-2022 22.2 MB 

AWU_SM_Inversion_CONUS_SMAP 2015-2022 8.6 MB 

AWU_SM_Inversion_CONUS_SMOS 2010-2022 13.9 MB 
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AWU_NoahMP_CONUS_Landsat 2010-2022 Lat:  

24.88°N – 

49.38°N 

Lon: -124.9°W 

– -66.88°W 

233 (lon) / 

99 (lat) 

10.2 MB IWU_ensmean IWU_uncertainty Based on the 

greenness 

vegetation 

fraction from 

AVHRR 

float64 

AWU_NoahMP_CONUS_Method1 2010-2022 3.2 MB 

AWU_NoahMP_CONUS_Method2 2010-2022 0.7 MB 

4.3. Characteristics of the Ebro Basin Datasets 

Table 4: Characteristics of irrigation datasets of the Ebro Basin region. 

File name Temporal 

extent 

Spatial extent Columns/Rows File size Layer Temporal mask Data type 

AWU_SM_Delta_Ebro_CCI_Active_FLUXCOM 2003-2020 Lat:  

40.62°N – 

43.12°N 

Lon:  

-3.875°W – 

1.875°W 

24 (lon) / 11 (lat) 

 

0.46 MB Irrigation November-March float64 

AWU_SM_Delta_Ebro_CCI_Combined_FLUXCOM 2003-2020 0.46 MB 

AWU_SM_Delta_Ebro_CCI_Passive_FLUXCOM 2003-2020 0.46 MB 

AWU_SM_Delta_Ebro_CCI_Active_SSEBOP 2003-2022 0.46 MB 

AWU_SM_Delta_Ebro_CCI_Combined_SSEBOP 2003-2022 0.46 MB 

AWU_SM_Delta_Ebro_CCI_Passive_SSEBOP 2003-2022 0.46 MB 

AWU_SM_Inversion_Ebro_ASCAT 2007-2022 Lat:  29 (lon) / 14 (lat) 0.32 MB Irrigation November-March float32 
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AWU_SM_Inversion_Ebro_CCI_Combined 2003-2022 40.12°N – 

43.38°N 

Lon:  

-4.625°W – 

2.375°W 

0.40 MB 

AWU_SM_Inversion_Ebro_CCI_Passive 2003-2022 0.40 MB 

AWU_SM_Inversion_Ebro_SMAP 2015-2022 0.16 MB 

AWU_SM_Inversion_Ebro_SMOS 2010-2022 0.26 MB 
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4.4. Characteristics of the Murray-Darling Basin Datasets 

Table 5: Characteristics of irrigation datasets of the Murray-Darling Basin region. 

File name Temporal 

extent 

Spatial 

extent 

Columns/

Rows 

File 

size 

Layer 1 Layer 2 

 

Temporal mask Data type 

AWU_SM_Delta_Murray_CCI_Active_FLUXCOM 2003-2020 Lat:  

-37.62°N – -

24.62°N 

Lon: 138.6°W 

– 152.4°W 

56 (lon) / 

53 (lat) 

 

5.1 MB Irrigation N/A May-August float64 

AWU_SM_Delta_Murray_CCI_Combined_FLUXCOM 2003-2020 5.1 MB 

AWU_SM_Delta_Murray_CCI_Passive_FLUXCOM 2003-2020 5.1 MB 

AWU_SM_Delta_Murray_CCI_Active_SSEBOP 2003-2022 5.5 MB 

AWU_SM_Delta_Murray_CCI_Combined_SSEBOP 2003-2022 5.5 MB 

AWU_SM_Delta_Murray_CCI_Passive_SSEBOP 2003-2022 5.5 MB 

AWU_SM_Inversion_Murray_ASCAT 2007-2022 Lat:  

-37.88°N – -

24.38°N 

Lon: 138.4°W 

– 152.6°W 

58 (lon) / 

55 (lat) 

2.5 MB Irrigation N/A April-August float32 

AWU_SM_Inversion_Murray_CCI_Combined 2003-2022 3.1 MB 

AWU_SM_Inversion_Murray_CCI_Passive 2003-2022 3.1 MB 

AWU_SM_Inversion_Murray_SMAP 2015-2022 1.2 MB 

AWU_SM_Inversion_Murray_SMOS 2010-2022 1.9 MB 
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AWU_NoahMP_Murray_Landsat 2010-2022 Lat:  

-37.88°N – -

24.38°N 

Lon: 138.4°W 

– 152.6°W 

58 (lon) / 

55 (lat) 

1.7 MB IWU_ensmean IWU_uncertainty May-August float64 

4.5. Characteristics of the India Datasets 

Table 6: Characteristics of irrigation datasets of the India region. 

File name Temporal 

extent 

Spatial extent Columns/Rows File size Layer Temporal mask Data type 

AWU_SM_Delta_Ebro_CCI_Active_FLUXCOM 2003-2020 Lat:  

8.125°N – 34.88°N 

Lon:  

68.38°W – 94.88°W 

108 (lon) / 107 (lat) 

 

19.6 MB Irrigation July-October 

(monsoon season) 

float64 

AWU_SM_Delta_Ebro_CCI_Combined_FLUXCOM 2003-2020 19.6 MB 

AWU_SM_Delta_Ebro_CCI_Passive_FLUXCOM 2003-2020 19.6 MB 

AWU_SM_Inversion_Ebro_ASCAT 2007-2022 Lat:  

7.875°N – 37.12°N 

Lon:  

68.12°W – 97.62°W 

118 (lon) / 119 (lat) 10.8 MB Irrigation July-October 

(monsoon season) 

float32 

AWU_SM_Inversion_Ebro_CCI_Combined 2003-2022 13.5 MB 

AWU_SM_Inversion_Ebro_CCI_Passive 2003-2022 13.5 MB 

AWU_SM_Inversion_Ebro_SMAP 2015-2022 5.2 MB 

AWU_SM_Inversion_Ebro_SMOS 2010-2022 8.5 MB 
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5. Datasets Interpretation 

The datasets provide estimates of the water applied for irrigation. They are experimental and should be 

interpreted accordingly. While they have been validated against in situ data in the CONUS, the Murray-

Darling basin, and the Ebro basin (see D4 PVASR sections 2.1 and 3.4 for the Murray-Darling basin, sections 

2.2, 3.2, and 5.3 for CONUS, and sections 2.4 and 3.3 for the Ebro basin) and intercompared (see D6 PVIR), 

they offer valuable insights into long-term and large-scale irrigation practices and represent a significant step 

toward the quantification of irrigation at these scales. However, our knowledge of their performance in 

comparison to actual irrigation practices remains limited to the regions and periods for which in situ data are 

available, as well as to comparisons with auxiliary datasets (irrigated area extent, climate) and 

intercomparison of dataset dynamics. 
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6. Datasets Uncertainties 

The datasets derived from the Model-observation integration (Noah-MP) approach include an uncertainty 

estimate based on an ensemble of 24 simulations, obtained by perturbing the meteorological input data. The 

uncertainties are provided in the variable "IWU_uncertainty" within the Model-observation integration 

(Noah-MP) datasets. Further details on the uncertainty estimation methodology can be found in ATBD 

Section 5.3.3. The datasets produced using the SM-based Inversion and SM-based Delta approaches do not 

include an uncertainty estimate. 
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7. Datasets Validation 

The datasets were validated using in situ data, including annual state-level irrigation records for the CONUS 

(2013 and 2018) and monthly district-level irrigation data for the Ebro and Murray-Darling Basins. Detailed 

analyses are provided in D4 PVASR, while dataset intercomparison and evaluation with auxiliary data are 

presented in D6 PVIR. 

In the CONUS, the NOAH-MP datasets demonstrate the best agreement with in situ data, followed by SM-

INVERSION (CCI Passive). The SM-DELTA (CCI Passive & FLUXCOM) dataset also performs well but tends to 

overestimate irrigation. Regarding spatial pattern, NOAH-MP (Landsat) and SM-DELTA (CCI Passive) show the 

highest alignment with a map of the percentage of area equipped for irrigation in the four most irrigated 

regions (California Valley, Snake River Plain, Mississippi Floodplain, and the Great Plains). These two datasets 

also capture similar temporal dynamics, including wet and dry years, despite relying on independent 

methodologies and input datasets.  

In the Ebro Basin, all datasets show an underestimation of irrigation when compared to in situ data. Metrics 

are relatively similar across the SM-DELTA datasets. SM-INVERSION datasets generally display stronger 

underestimation and lower Pearson correlations compared to SM-DELTA, with the exception of CCI Passive, 

which performs comparably. Regarding spatial patterns, SM-DELTA datasets exhibit some correlation with 

the percentage of area equipped for irrigation, whereas SM-INVERSION does not. Nevertheless, in terms of 

temporal dynamics, SM-DELTA (CCI Combined & FLUXCOM, CCI Passive & FLUXCOM) and SM-INVERSION (CCI 

Combined, CCI Passive) show strong similarities, despite differences in algorithms and input datasets. 

In the Murray-Darling Basin, performance varies widely between districts, with no dataset consistently 

standing out. SM-DELTA datasets using SSEBOP ET and SM-INVERSION (CCI Passive) tend to perform better 

in Murrumbidgee and Coleambally, while NOAH-MP (Landsat) shows better results in Murray Mulwala and 

Coleambally. Regarding spatial patterns, NOAH-MP (Landsat) exhibits the strongest correlation with the 

percentage of area equipped for irrigation, while SM-DELTA datasets using FLUXCOM ET show only weak 

correlations. Other datasets do not exhibit any clear spatial relationship. In terms of temporal dynamics, SM-

DELTA (CCI Passive and CCI Combined) closely aligns with SM-INVERSION (CCI Passive and CCI Combined). 

In India, SM-based Inversion datasets estimate higher irrigation levels, especially during the Rabi season 

(November-March), than the SM-based Delta datasets. All datasets estimate more irrigation in the highly 

irrigated Ganges Valley in the north. Spatially, SM-based Delta datasets show a correlation with a map of 

irrigated areas, while the SM-based Inversion ones do not. 



 

4000142449/23/I-NB 

  Page 19 

______________________________________________________________________________________ 

 

Anthropogenic Water Use (CCI-AWU) 

8. Key Knowledge Elements 

To provide users with essential knowledge, we summarize below the key information regarding the study 

regions, the algorithms employed, and the satellite data and models utilized. For further details on the study 

areas, please refer to the D2 Report explaining the criteria for selecting test region, D3 ATBD, and D4 PVASR. 

 

8.1. Study Regions 

Figure 1 illustrates the four study regions for which irrigation datasets have been generated. The 0.25° pixels 

displayed on the maps represent the percentage of irrigation equipment within each pixel, derived from the 

Global Map of Irrigated Area by Siebert et al. (2013). There are significant differences in the density of 

irrigated areas and the spatial distribution of irrigation across these regions.  

In the CONUS, irrigation is primarily concentrated in four highly irrigated zones. From west (more arid) to 

east (more humid): the California Valley, Snake River Plain, Great Plains, and Mississippi Floodplains. In the 

Ebro Basin, irrigation is mainly concentrated in the eastern part of the Ebro Valley, where sprinkler, drip, and 

flood irrigation are intensively practiced. In the Murray-Darling Basin, which has a semi-arid climate, irrigation 

is predominantly located in the south along the Murray River, with additional irrigated areas in the northeast. 

In India, the Ganges Valley in the north is the most intensely irrigated region globally. The rest of India also 

has extensive irrigation coverage. There are three irrigation seasons in India: Rabi (dry season, November to 

March), Zaid (intermediate season, April to May), and Kharif (monsoon season, June to October). 
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Figure 1: Four study regions for which irrigation datasets were produced (CONUS, Ebro Basin, India, and Murray-

Darling Basin) with the percentage of area equipped for irrigation (GMIA; Siebert et al., 2013). 

 

8.2. Algorithms 

 8.2.1. SM-based Inversion 

The SM-based Inversion approach estimates irrigation water use by inverting the soil water balance equation. 

This method, derived from the SM2RAIN algorithm (Brocca et al., 2014), uses SM variations to distinguish 

between precipitation and irrigation water inputs. By removing precipitation from the estimated water input, 

the irrigation contribution can be isolated. 

The soil water balance equation is expressed as: 

𝑛𝑍 𝑑𝑆(𝑡)/𝑑𝑡 =  𝑖(𝑡)  + 𝑟(𝑡)  − 𝑔(𝑡)  − 𝑠𝑟(𝑡)  − 𝑒(𝑡)             (Eq. 1) 

In which 𝑛 [-] is the soil porosity, 𝑍 [mm] is the soil layer depth, 𝑑𝑆(𝑡)/𝑑𝑡 [-] is the variation of relative SM 

𝑆(𝑡) in time 𝑡 [day], 𝑖(𝑡) [mm/day] is the irrigation rate, 𝑟(𝑡) [mm/day] is the rainfall rate, 𝑔(𝑡) [mm/day] is 

the drainage, 𝑠𝑟(𝑡) [mm/day] is the surface runoff, and 𝑒(𝑡) [mm/day] is the actual evapotranspiration rate. 
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 𝑖(𝑡) is unknown and estimated from the equation reformulated as: 

𝑊𝑖𝑛(𝑡) = 𝑍 ∗ 𝑑𝑆(𝑡)/𝑑𝑡 + 𝑔(𝑡) + 𝑠𝑟(𝑡) + 𝑒(𝑡)              (Eq. 2) 

with 𝑊𝑖𝑛(𝑡) = 𝑖(𝑡) +  𝑟(𝑡), meaning irrigation is retrieved as: 

𝑖(𝑡) = 𝑊𝑖𝑛(𝑡) −  𝑟(𝑡)                  (Eq. 3) 

The drainage term, 𝑔(𝑡), represents water percolating downward beyond the root zone and is modeled using 

the function 𝑔(𝑡) = 𝑎𝑆(𝑡)𝑏, where a and b are calibration parameters (Brocca et al., 2014). The ET term, 

𝑒(𝑡), accounts for water loss due to plant transpiration and soil evaporation. It is expressed as 𝑒 = 𝐹𝑆(𝑡)𝑝𝑒, 

where 𝑝𝑒(𝑡) is the potential evapotranspiration and 𝐹 is a scaling factor accounting for SM availability. 

Surface runoff 𝑠𝑟(𝑡) is considered negligible. The model parameters are calibrated on non-rainy days. 

 

8.2.2. SM-based Delta 

The SM-based Delta approach estimates irrigation by comparing satellite-derived SM changes 𝑑𝑆𝑀𝑠𝑎𝑡/𝑑𝑡 

with modeled SM changes 𝑑𝑆𝑀𝑚𝑜𝑑/𝑑𝑡 (Zaussinger et al., 2019). The key assumption is that modeled SM 

changes are only driven by precipitation, while satellite SM changes reflect both precipitation and irrigation. 

The soil water balance equations are: 

𝑍 ⋅
𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
= 𝑃(𝑡) + 𝐼(𝑡) − 𝐸𝑇(𝑡) − 𝑅(𝑡) −  𝛥𝑆𝑟𝑒𝑠𝑡                        (Eq. 1) 

𝑍 ⋅
𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
= 𝑃(𝑡) − 𝐸𝑇(𝑡) − 𝑅(𝑡) −  𝛥𝑆𝑟𝑒𝑠𝑡                          (Eq. 2) 

where 𝑃(𝑡)  [mm] is precipitation, 𝐼(𝑡)  [mm] is irrigation, 𝐸𝑇(𝑡) [mm]  is evapotranspiration, 𝑅(𝑡)  [mm] is 

runoff, and 𝛥𝑆𝑟𝑒𝑠𝑡  [mm] represents soil water storage changes. Since 𝑃, 𝐸𝑇, 𝑅, and 𝛥𝑆𝑟𝑒𝑠𝑡 are assumed 

identical in both equations, irrigation is estimated as: 

𝐼(𝑡) = 𝑍 ⋅
𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
− 𝑍 ⋅

𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
                         (Eq. 3) 

           

Zappa et al. (2022b, 2024) improved the method by incorporating 𝐸𝑇 [mm] differences between satellite 

(including irrigation signal) and model (excluding irrigation signal). This latest version was used in the CCI-

AWU project. The refined equation accounts for this as follows: 

𝐼 = 𝑍∗ 𝑑𝑆𝑀𝑠𝑎𝑡

𝑑𝑡
− 𝑍∗ 𝑑𝑆𝑀𝑚𝑜𝑑

𝑑𝑡
+ (𝐸𝑇𝑤/𝑖𝑟𝑟𝑖𝑔(𝑡) − 𝐸𝑇𝑤/𝑜−𝑖𝑟𝑟𝑖𝑔(𝑡))             (Eq. 4) 

Where 𝐸𝑇w/irrig  [mm]  is the ET data theoretically including irrigation, and 𝐸𝑇w/o_irrig [mm] is the one 

theoretically excluding it.  
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8.2.3. Model-observation integration (Noah-MP) 

The Model-observation integration method estimates irrigation using Noah-MP v4.0.1 (Niu et al., 2011), a 

land surface model embedded within NASA’s Land Information System (LIS). This approach integrates 

satellite-derived irrigated area maps with modeled irrigation simulations. 

Irrigation is simulated using a sprinkler irrigation scheme (Ozdogan et al., 2010) applied to cropland pixels 

identified from MODIS land cover maps. During the growing season, irrigation is triggered when root-zone 

moisture availability (MA) falls below a user-defined threshold (𝑇ℎ𝑖𝑟𝑟 = 0.45), based on Modanesi et al. 

(2022), Busschaert et al. (2023), and De Lannoy et al. (2024). More information about 𝑇ℎ𝑖𝑟𝑟 and the choice 

of the value 0.45 can be found in D4 PVASR. 𝑀𝐴 is defined as: 

𝑀𝐴 =
𝜃−𝜃𝑊𝑃

𝜃𝐹𝐶−𝜃𝑊𝑃
 (Eq. 5) 

where θ is the actual SM, 𝜃𝐹𝐶 is the wilting point, and 𝜃𝐹𝐶 is the field capacity associated with the soil textures 

derived from the Harmonized World Soil Database (HWSD). The irrigation amount restores the root-zone 

moisture to field capacity. 

Noah-MP simulations were conducted on all cropland pixels, regardless of actual irrigation status. To refine 

irrigation estimates, pixel-level simulations were overlaid with three different irrigated area maps: 

1. Landsat-Derived Global Rainfed and Irrigated-Cropland Product (Teluguntla et al., 2023) 

2. Relative Bias Approach (D3 ATBD 5.2.1) (referred to as “Method 1”): based on bias differences 

between Noah-MP SM (excluding irrigation) and SMOS SM (including irrigation). 

3. Multi-Resolution Analysis Approach (D3 ATBD 5.2.2) (referred to as “Method 2”): derived from 

spectral differences between Noah-MP SM and SMOS SM. 

The overlay process adjusts irrigation estimates per pixel based on the irrigated-to-total cropland ratio. If 

irrigation covers only part of a grid cell, the estimated irrigation amount is reduced accordingly. Conversely, 

if the irrigated fraction is larger than the modeled cropland, irrigation is scaled up. 

 

8.3. Inputs data 

8.3.1. Soil moisture data 

ESA Climate Change Initiative (CCI) 

The ESA CCI SM products (CCI Active, CCI Passive, and CCI Combined; Dorigo et al., 2017) provide global SM 

data at a 0.25° grid resolution. 

● CCI Active merges data from three radar satellites (including ASCAT from 2007) and covers the period 

from 1978 to the present. 

● CCI Passive integrates data from 12 radiometer satellites and is available from 1978 onward. 

● CCI Combined merges both CCI Active and CCI Passive datasets, also covering the period from 1978 

to the present. 
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CCI Passive, CCI Combined, and CCI Active are used in the SM-based Delta algorithm, while CCI Passive and 

CCI Combined are used in the SM-based Inversion algorithm. 

Soil Moisture and Ocean Salinity (SMOS) 

The Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2016) by ESA, launched in 2009, provides 

SM observations up to 5 cm depth using passive L-band microwave sensors. SMOS provides SM data at a 

spatial resolution of ~42 km from 2010, with a global revisit time of 3 days. SMOS data have been resampled 

to the ESA CCI 0.25° grid and are used in the SM-based Inversion algorithm. 

Soil Moisture Active Passive (SMAP) 

The Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010) by NASA provides SM observations 

up to 5 cm depth using passive L-band microwave sensors. The data are available at a spatial resolution of 

~40 km from 2015, with a global revisit time of 3 days. SMAP data have been resampled to the ESA CCI 0.25° 

grid and are used in the SM-based Inversion algorithm. 

Advanced Scatterometer (ASCAT) 

The Advanced Scatterometer (ASCAT), onboard the MetOp series of satellites operated by EUMETSAT, is an 

active microwave radar instrument designed to measure SM globally (Brocca et al., 2017). ASCAT provides C-

band backscatter observations, which are used to estimate SM at a spatial resolution of ~25 km, with a daily 

global coverage. The dataset is available from 2007 and has been resampled to the ESA CCI 0.25° grid. ASCAT 

SM data are used in the SM-based Inversion algorithm. 

ERA5-Land 

ERA5-Land is the land component of the fifth-generation European ReAnalysis (ERA5) dataset (Muñoz-

Sabater, 2019), developed by the Copernicus Climate Change Service (C3S) at ECMWF. It provides land 

surface water and energy cycle data from 1950 at a 9 km spatial resolution with hourly time steps. Unlike 

satellite-based SM observations, which capture actual surface conditions, ERA5-Land does not include 

irrigation signals, as it is mainly driven by meteorological forcing. In this study, the 0–7 cm soil water layer is 

used to ensure consistency with satellite sensor depths. ERA5-Land SM data have been resampled to the ESA 

CCI 0.25° grid and are utilized in the SM-based Delta algorithm. 

 

8.3.2. Evapotranspiration data 

Operational Simplified Surface Energy Balance (SSEBop) 

The Simplified Surface Energy Balance operational (SSEBop) product (Senay et al., 2018) estimates ET using 

a simplified energy balance approach based on the classification of “wet” and “dry” reference pixels. Wet 

pixels correspond to well-watered vegetation areas with high ET, while dry pixels represent bare soil or 

stressed vegetation with minimal ET. SSEBop scales ET values across different landscapes using surface 
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temperature data and is available at a spatial resolution of 1 km. SSEBOP ET data have been resampled to 

the ESA CCI 0.25° grid and are used in the SM-based Delta algorithm. 

FLUXCOM 

The FLUXCOM ET product (Jung et al., 2019) is derived from a machine-learning-based model trained on ET 

flux tower measurements. It uses remote sensing predictors, primarily from MODIS, including vegetation 

indices and surface temperature. The dataset consists of outputs from 36 different machine-learning models 

that estimate ET at the global scale at a 0.1° resolution, resampled to 0.25°, and is used in the SM-based Delta 

algorithm. FLUXCOM ET data have been resampled to the ESA CCI 0.25° grid and are used in the SM-based 

Delta algorithm. 

Noah-Multiparameterization (Noah-MP) 

The Noah-Multiparameter (Noah-MP) land surface model simulates ET, and for this project, we ensured that 

only ERA5 forecast meteorological data were used to prevent any observational influence that could 

introduce an irrigation signal. Consequently, unlike ET estimates from SSEBop and FLUXCOM, Noah-MP ET 

used here excludes irrigation effects. Noah-MP ET data have been available since 2010 for CONUS and the 

Murray-Darling Basin, with a 0.25° resolution, and are used in the SM-based Delta algorithm. 

ERA5-Land 

The ERA5-Land ET dataset is used for regions and periods where Noah-MP ET data are unavailable. Analyses 

showed that ERA5-Land ET exhibits a very similar spatio-temporal dynamic and magnitude to Noah-MP ET, 

making it suitable to represent ET without irrigation. ERA5-Land ET data have a 9 km resolution, have been 

resampled to the ESA CCI 0.25° grid, and are used in the SM-based Delta algorithm. 

Global Land Evaporation Amsterdam Model (GLEAM) v3.7b 

The GLEAM product (Martens et al., 2017) estimates potential evapotranspiration (PET) using a Priestley-

Taylor-based formulation. It relies on satellite-derived radiation and meteorological reanalysis data to 

compute PET at the global scale. ETP data from GLEAM have a 0.25° resolution and are used to compute the 

ET term in the SM-based inversion approach. 

 

8.3.3. Maps of irrigated areas 

Global Map of Irrigated Areas (GMIA) 

The Global Map of Irrigated Areas (GMIA) by Siebert et al. (2013) is a global dataset of the percentage of land 

equipped for irrigation at a 0.083° (~10 km) resolution. It was produced by compiling national and subnational 

irrigation statistics, integrating land cover data, proximity to water sources, and remote sensing information, 

and applying a downscaling method to distribute irrigation areas spatially. The dataset represents irrigation 

infrastructure availability, not necessarily the actual irrigated area. GMIA is used to spatially mask pixels that 

are non-irrigated or have low irrigation coverage (<5% equipped for irrigation) in the SM-based Inversion and 

SM-based Delta approaches. 
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Landsat-derived Global Rainfed and Irrigated-Cropland Product at 30 m (LGRIP30) 

The Landsat-Derived Global Rainfed and Irrigated-Cropland Product at 30 m (LGRIP30), developed by 

Teluguntla et al. (2023), is a high-resolution global map that distinguishes irrigated and rainfed croplands at 

30-meter spatial resolution. This dataset was generated by combining the Global Cropland Extent Product at 

30 m (GCEP30) (lpdaac.usgs.gov), which identifies cropland extent, with multispectral bands and indices 

derived from Landsat 8 imagery for the period 2014–2017. The approach leverages supervised machine 

learning algorithms, such as random forests, to classify irrigated and non-irrigated areas. This map is used in 

the Model-observation integration algorithm. 

 

https://lpdaac.usgs.gov/documents/2158/LGRIP30_ATBD_v2.pdf?utm_source=chatgpt.com
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9. Datasets Access 

The AWU products are freely available for download at the following Zenodo link: 

https://zenodo.org/records/14988198 

 

https://doi.org/10.5281/zenodo.14988198
https://doi.org/10.5281/zenodo.14988198
https://zenodo.org/records/14988198


 

4000142449/23/I-NB 

  Page 27 

______________________________________________________________________________________ 

 

Anthropogenic Water Use (CCI-AWU) 

10. Contact Information 

The contact email address is: pierre.laluet@geo.tuwien.ac.at . 

 

mailto:pierre.laluet@geo.tuwien.ac.at
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10. User Feedback 

User feedback is warmly welcomed and encouraged. All questions and remarks concerning the product can 

be addressed to our contact e-mail address provided in Section 8.
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