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Use of Uncertainties in Models and Reanalyses

1. Purpose and scope of the Technical note

One of the main requirements for the new CCI clerddata records (CDRS) is to include the

associated uncertainties along with the measuredbles for each measurement. This has
not been available to date in most satellite clevddta records. This document describes how
these uncertainties will be used by the modellind @analysis communities in order to help

guide the data providers who are providing the rttagdies in their datasets.

2. Treatment of uncertainties in climate modelling

2.1 Model evaluation and development

Model evaluation is perhaps the most obvious exarmaplsing satellite-derived observations
in climate modelling. It is, however, importantremember that this is not simply a question
of comparing a model with the observations but @baising the information gained from
such comparisons to improve the model, for exarbgléeveloping better parameterizations
of physical processes. This has important implicesj both for the way the data is used by
modellers but also for the types of product, inglgduncertainty estimates,that they require
from the data providers. Whilst it is probably fao say that the use of observational
uncertainties by climate modellers is still in itdancy, it also true that there is now an
increasing demand for this information and thad thilikely to grow very quickly in the near
future. This is particularly the case when theeatghce — as measured by some suitable metric
— between the model outputs and the observation§ tise same order of magnitude as the
differences between the available observationadyuts.

(a) The basic problem

The three most basic questions we seek to answe&n wiomparing our models to
observations are: (i) How good is our model? &ipur model improving or getting worse as
a result of the changes we have made to it? (iiljatMs the level of confidence of the
reference observational product? This last oneadiqularly important when the model
performance is considered to be reasonable.

In our model we wish to simulate a particular pbhgbiguantity,Xuyop, and we would like to
know how close this is to reality, as defined bg tiest available observation§gss. We
want to avoid overconfidence in our simulation, irgerring from Xyop = Xoss that our
model is performing much better than it actuallybig we also do not want to reject or
penalise the model unfairly, i.e. inferring frodpop # Xoss that our model is worse than it
is.

We would thus like to have some estimate of theentadional uncertainty{ogs + AXogs. In

the simplest case we can then determine if our hsmteilation is plausible or credible, in the
sense that it lies within the range of the obséat uncertaintyAXogs. In addition, if we
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can also estimate our model uncertainop £ AXuop, for example by running an
ensemble of simulations, we then have an evenrbmtes for assessing the credibility of the
model. A further level of sophistication can alse &dded to our evaluation if we have
multiple observational data sets for a given quaXioss1 + AXoss1, Xoss2 = AXogsz, €tc

In general modellers will probably assume thXiogs is the data provider's best estimate of
the observational uncertainty, i.e. that all of tiedevant contributions taXepgs such as
measurement errors, calibration errors, spatialtangoral sampling, structural uncertainty,
etc, have been accounted for. It is therefore waportant to know if this isot in fact the
case, so that a meaningful comparison between tidelmand observation can actually be
made. A good indication of the type of informatiamnd level of detail required by modellers
is the documentation of requirements for the Ob$2B1hctivity which is part of CMIP5
(http://obs4mips.linl.gov:8080/wiki/FrontPage

(b) The wider context

The above remarks can be generalised to the broadér-model context. We may then seek
to answer questions such as:

- Are climate models improving with time, e.g. betwe€MIP3 and CMIP5 or as
reported in successive IPCC reports?

- Is it possible to say that some models are demanigtbetter than others, i.e. in a
clearly-defined, objective, and quantified sensethé ranking of models dependent
on the chosen metric?

- Are some particular physical quantities more rolyusimulated in models than
others? Are there consistent strengths or weaksems®ss the range of available,
independent models?

- Does a better comparison with currently-availabdbsevvations imply more reliable
projections?

- Can we weight models, in terms of their skill, hs® our comparisons with the
observations?

The above questions have stimulated a growing astein the development of objective
methods to assess model performance and the cctimtrof reliable metrics to do this (e.g.
Gleckler et al., 2008). This activity includes ttoemation of WGNE/WGCM metrics panel
(http://www-metrics-panel.linl.gov/wiki They have also motivated an IPCC expert meeting
on Assessing and Combining Multi Model Climate Botipns in preparation for the
publication of the Fifth Assessment Report (Knattal., 2010).

(c) Model evaluation in the absence of observatianaertainties

It is often the case, however, that reliable obsional uncertainties are not available. What
are the options for climate modellers if this i8 so

The simplest approach is to treat all data setseasy equally plausible. Here we might be
said to be applying a “principle of indifferenceficawe do this because we have no evidence
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to suggest that doing otherwise is any more vatallowing on from this we might then
choose to define our “observational uncertainty;” fas example, the range of a particular
parameter spanned by the available data setswHsithe approach chosen by Gleckler et al.
(2008) when they evaluated the simulation of twethticentury climate by the CMIP3
models. To give some indication of the effects b$ervational uncertainty, for most fields
they provided a comparison of the model simulatiwiik two different reference data sets.

Alternatively, we might assume that technologicas@entific developments necessarily lead
to improved data sets, i.e. the most recent dasaase always better than their predecessors.
This could be because they include enhanced infosmaontent (e.g. more channels, active
vS. passive sensors to detect rainfall, etc); opraved retrieval algorithms and data
processing methods; or more up-to-date technolmgyroved sensors/instrumentation). Note
that we almost always assume that a new versiomnofexisting data set will be an
improvement on the last.

It is also the case that we sometimes make a giugexssessment of observational data sets
based upon our prior experience or expertise. kamele, we might consider that the
observed values of a quantity that we are presewidd are so far from our theoretical
expectations that the most likely explanation & they are in error.

Finally, we may decide to make an approximate edBnof the observational uncertainty.
This is often based on input from the data prowd#remselves and is usually quite
conservative, e.g. = 100%.

Climate modellers do of course recognize that fithese solutions are far from ideal: it is
thus relatively straightforward to make the cagsetie determination and provision of reliable
observational uncertainties by data providers.

(d) Examples

Figure 1 illustrates the potential dilemma whenabservational uncertainties are available.
According to the first data set (ISCCP) the newerson of the model is an improvement
compared to the older version, but according to gbeond data set (CERES) the overall
quality of the simulation deteriorates. There atgo aconsiderable regional differences
between the comparisons depending on which ofvtloediata sets is used for the evaluation,
e.g. over the Atlantic Ocean.

Figure 2 shows how this relatively simple approaem be made more quantitative and

applied to a whole set of related parameters, ia tase quantities of relevance to the

hydrological cycle. In this example multiple obs®ignal data sets are used for evaluating
each parameter of interest and the observatiore@rtainty has been estimated assuming that
each of these data sets is equally valid.

Figure 3 is taken from Jiang et al. (2012), whiadsdatibes the evaluation of the vertical

distributions of atmospheric water vapour and ctoudthe new generation of climate models
submitted to CMIP5. As water vapour is strongly mled with the cloud liquid/ice water
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content (LWC/IWC) it is informative to analyse th@dels' simulations of these quantities
simultaneously. We can see that there is a mugeiapread in model performance across
the ensemble in the upper troposphere than in tddlenand lower troposphere. Moreover,

while the model simulations tend to lie within tlestimated ranges of observational

uncertainty in the lower troposphere they cleadynt higher up. Taking these results as a
starting point we can then investigate how strorighse two model errors are coupled, and
how much the models' physical parameterization reelse (e.g. cloud microphysics or

convection) contribute to the biases we see.

Figure 4 illustrates the problem that arises whendifferences between model outputs and
observations are of the same order of magnitudkeadifferences between two observational
products. In this case it is difficult to draw afiyn conclusions on the model’s performance
without complementary information on the uncertasmbf observational products. Moreover,
information on the strengths and weaknesses dflifferent products is specifically required
over the spatial domains and time periods beind tmethe model evaluation (in this case the
inter-tropical region in the lower stratosphereabthe time of ozone hole deepening).

c) Rad SW TOA up for ann d) Rad SW TOA up for ann
AKEVI: GA3.0 minus ISCCF climatology ALIUR: GA4.0 minus ISCCP climatelogy

I s
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Figure 1: The annual mean reflected shortwave rdiaat the top of the atmosphere simulated by
two versions of the Met Office climate model coragdo the ISCCP-FD (upper) and CERES-EBAF
(lower) observational products. Values shown argehoninus observations in Wm-2. The two
versions of the model chosen (earlier version eneft, later version on the right panels) are
arbitrary and are taken from current developmentakk in progress.
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Although the above examples focus primarily on apih@ric quantities it is important to
recognize that similar efforts are being pursuedsxthe climate modelling community. For
example, Luo et al. (2012) propose a frameworlagsessing (“benchmarking”) land models.

This framework consists of four components:

1) Identification of the aspects of models to be eatdd.

2) A set of benchmarks as standardized referencestonodels.

3) A scoring system (metrics) to measure and compasehperformance skills.
4) Evaluation of model strengths and deficienciegriodel improvement.

Clearly this framework could be applied more widilgin land models to the full range of
model evaluation activity, encompassing atmosphedeanic and cryospheric processes and
parameters.
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Figure 2: Normalized assessment criteria (ratiosnafan field root mean square errors) for a range of
radiation, cloud and hydrological cycle variables the two simulations shown in Fig. 1. These
errors are calculated relative to a reference sedloservations for each of the variables shown. The
whisker bars are observational uncertainty, whigltalculated by comparing these with alternative
data sets. The colour coding indicates whethep#rformance of the new version of the model has
improved, deteriorated, or remains unchanged comgao its predecessor. For a complete

description of this methodology see Walters et24111).
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Figure 3: Scatter plots of tropical mean (30°N—-3088eanic multi-year mean atmospheric water
vapour (H20) versus cloud ice water content IW@aatL00 and (b) 215 hPa, and H20 versus cloud
liquid water content (LWC) at (c) 600 and (d) 90®ahBlack dots show the A-Train observed values
and the grey area indicates the observational utaieties. Coloured dots/circle are the values from
the CMIP5 models and the black open-circles repretee multi-model means. [From Jiang et al.,
2012] quality of the weighted ensemble mean. Thaygse and apply some relatively simple statistics
to demonstrate this. However, they also suggesttheertainties arising from the use of different
datasets could be naturally included in probabidigirojections of regional climate change within a
Bayesian statistical framework.
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Figure 4: Diagnoses of comparisons betwdabe CCl O3 preliminary L3 product from Sciamachy
(black lines), the CCMVal2 O3 observational prod(red lines) and the CNRM-CCM O3 simulated
in a nudging experiment towards temperatures antdsviof ERA-Interim reanalysis (green lines).
Shown are (a) the mean October 2006 vertical pFsfdt the equator, (b) zonal averages of the mean
October 2006 at 3 hPa, and (c) the monthly mean®®fat 50hPa for 2006. The CCMVal2 O3
observational product was developed by Greg Bod€Bedeker Scientific) and Birgit Hassler
(NOAA) and combines measurements made by satmlsed instruments, ozonesondes, aircraft-
based instruments and lidars (version 1.1.0.6 efdata base). The CNRM-CCM is an atmospheric
climate model including an on-line comprehensivpresentation of chemical processes in the
stratosphere (Michou et al., 2011).

The global observing system — including the ESA GCtontinues to offer an increasing
number of data sets which potentially could becaraedidates for benchmarking climate
models. It must be recognized, however, that mdrlgese data sets have limited information
content and are not always suitable for our purpo$kis means that we need to thoroughly
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assess the range of available data sets in ord#vielop reliable benchmarks against which
model performance can then be both effectively@jdctively evaluated.
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Figure 5: Attributed global mean temperature tremois1900-1999 contributing to each of the four
observational datasets indicated on the x-axisinfzges of the attributed trends (represented with t
asterisks) of greenhouse gases, other anthropoganitnatural factors, together with their sum. The
5-95% limits of the attributed trends are indicat®dthe vertical lines. Trends in the observatiares
also shown (black asterisk symbol) with the 5-95¥%ettainty range representing an estimate of
internal climate variability deduced from the clitaanodel control simulation. The diamonds show
the trends calculated after masking by the obseymat coverage. [From Jones and Stott, 2011]

2.2 Detection and attribution of climate change

Although numerous studies have clearly demonstrttatt much of the recent warming in
global near-surface temperatures can be attriblateédcreases in anthropogenic greenhouse
gases (IDAG, 2005; Hegerl et al., 2007), veryditiias been done to assess the sensitivity of
these findings to the choice of observational dseé#s, and thus to the observational
uncertainty. Errors in these measurements arisetauee number of factors, e.g. grid-box
sampling, instrumental biases, and changes toltimlgcoverage. Jones and Stott (2011) is
the first exploration of the full impact of obsetiemal uncertainty on attribution. They
performed a standard detection and attributionyamalusing four independently-processed
near-surface temperature data sets. The maingeselisummarised in Figure 5.

Their principal finding is that the ‘*headline’ IPC&nclusion on attribution is indeed robust
to observational uncertainty. Clearly this type stfidy needs to be both developed and
expanded to parameters other than the global medace temperature (Vautard and Yiou,
2012) and the precise details of such attributesuits may well depend on the observational
data set, e.g. for smaller sub-regions. A furte@ommendation of Jones and Stott (2011) —
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itself following Thorne et al. (2010) — is thatwsttural uncertainty in data sets, as determined
by differences between different reconstructiotsmusd be accounted for along with other
types of uncertainty when making comparisons witbdets. In particular, as the spatial
pattern of the observed trends is often the foausdktection and attribution studies, the
homogenization of the time series is a key compboéthe data reconstruction process that
needs to be considered with specific attentioméouncertainty analysis.

2.3 Constraining climate projections

In a recent study Gomez-Navarro et al. (2012) erarttie degree to which the evaluation and
ranking of an ensemble of regional climate modelsased on their ability to reproduce
observed climatologies of surface temperature amofall — is sensitive to the choice of
reference observational dataset. They demonsthaite éven in areas covered by a dense
observational network (Spain in their case); uraeties in the observations are comparable
to those in state-of-the-art regional climate med&he clear implication of this is that model
evaluation needs to account for the observationakudainties. Furthermore, they point out
that weighting models according to how well theyfpen against a single observational
dataset, without acknowledging the observationaleuninties, might actually reduce the
quality of the weighted ensemble mean. They props# apply some relatively simple
statistics to demonstrate this. However, they alsggest that uncertainties arising from the
use of different datasets could be naturally inetéh probabilistic projections of regional
climate change within a Bayesian statistical framu

In fact, work in this direction has already commesh¢Sexton et al. 2012; Sexton and Murphy
2012). Sexton et al. (2012) outline a method fadpcing probabilistic projections of climate
change at both global and regional scales. In qudati they consider the response to
increasing atmospheric G@n both global, annual-mean surface temperatuderagional
climate change in summer and winter temperaturepagcipitation over Northern Europe.

Their approach combines information from a pertdrpbysics ensemble (of a single climate
model), a multi-model ensemble (CMIP3/IPCC AR4)d abservations and is based on a
multivariate Bayesian framework: this enables trezjgtion of a joint probability distribution
for several variables constrained by multiple obagonal metrics. The use of multiple
metrics is important because, unlike using a simgggric, it reduces the risk of rewarding a
model which scores well fortuitously (for exampleedcompensation between large errors of
opposite sign) rather than because it is providingealistic simulation of the observed
guantity. Here then, model skill can be definedtlaes likelihood of a model given the
observations. Clearly, this approach also requjtesititative estimates of uncertainties in the
observations used to constrain the climate prajestiThese are obtained using two or three
alternative observational data sets for each qtyamind then generating 100 “pseudo-
observations” by adding random linear combinatiointhe different data sources.

An example of the method — applied to the globakmseurface temperature response to
doubling CQ — is shown in Figure 6. This shows that neglectiregobservational uncertainty

has some important negative consequences: it nartbw distribution of the surface

temperature response; it reduces the effective lgasipe; and it unfairly excludes some

models.
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Figure 6: Probability distribution function (pdf)f¢he global mean temperature response (K) to
doubling atmospheric CO2 derived from a large erderof climate model simulations and applying
the Bayesian approach described in the text. Tloepifs show the impact of including (left) and
excluding (right) the observational uncertainty fffn Sexton et al., 2012]

Another type of approach is suggested by studieb sis Hall and Qu (2007), who try to

constrain the snow albedo feedback in climate nsdsing observations of the present-day
seasonal cycle. Following on from this Fernandes.g2009) attempted to quantify the snow
albedo feedback using satellite observations. biadl Qu (2007) suggest that this approach
could possibly be extended to other processes, asdfe sea-ice feedback in the Arctic,
although this has yet to be demonstrated. Note wewthat making a link between the

performance of models on present or past climataliions and uncertainties in model

projections remains challenging (Knutti et al., @01

2.4 Reconciling observations and models

It is now generally recognised that comparisonsveen climate models and observational
data require as much consistency as possible bettheesimulated and observed quantities —
e.g. effective use of the information content oé thneasurements, temporal and spatial
sampling — in order to draw meaningful conclusioagarding model performance. This

contrasts with the early work in this field whicftem consisted of placing satellite-derived

guantities and their model ‘equivalents’ side-bgesiln a sense climate model evaluation is
moving more towards the more rigorous match-ups/éen models and observations used in
data assimilation as part of numerical weatheriptied systems.

We can attempt to achieve this consistency in tagsw (i) producing observational datasets
which match model-simulated parameters and diagrso@he “satellite-to-model” approach);
and (ii) simulating in the model what is actuallyserved by the satellite sensor (the “model-
to-satellite” approach). Here we give examplesaihb

(a) Top-of atmosphere radiation budget: CERES EBAF

The standard NASA CERES top-of-atmosphere (TOA)bglmean radiative fluxes have a
positive net imbalance of around 6.5 V¥nThis is much larger than the best estimate d5 0.8
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Wm™ based on observations of ocean heat content ddtemadel simulations, with the major
sources of uncertainty being related to the CERS8ument absolute calibration.

This makes using the data for coupled climate medaluation problematic, as these models
need to be close to balance for present-day conditto be used reliably. It also has
implications for attempts to estimate the Earthlsbgl energy budget and for inferring

meridional heat transports.

To alleviate these difficulties the CERES Energyabee and filled (EBAF) TOA product
(Loeb et al., 2009) was designed specifically fimate modellers needing a net imbalance
constrained to the ocean heat storage term. TheESEBam undertook a detailed uncertainty
analysis and determined that the CERES instrumalitiration was the largest uncertainty,
with other aspects of the processing chain makmgller, but not negligible, contributions.
They then derived and applied a set of adjustntentise various terms to produce a radiation
budget data set that was consistent with the reouants of the climate modelling
community. The CERES EBAF data set now extends f&000 to the present and is
considered the standard reference for climate medsdlation and other studies.

(b) The GCM Oriented CALIPSO Cloud Product (GOCCP)

CALIPSO combines an active lidar instrument witlsgee infrared and visible imagers to
examine the vertical structure and properties otids and aerosols. The need for a specific
model-oriented CALIPSO data set arises becausentbgoretation of the lidar backscatter
ratio in terms of cloud products (e.g. cloud franjirequires a set of criteria that depends on
the vertical resolution at which the lidar scattgrratio is measured or computed.

In order to allow consistent comparisons betweenetwand the CALIPSO data, the GCM
Oriented CALIPSO Cloud Product (GOCCP) data set heen produced (Chepfer et al.,
2010). This is an entirely new product that hasnbderived from the original CALIPSO
Level-1 data. An example of its application to @i model evaluation is shown in Figure 7.
In addition, the GOCCP data set is consistent withCALIPSO simulator outputs derived
from models using the satellite simulator COSP (sdew).

(c) Forward modelling and satellite simulators

As noted above, the ‘traditional’ approach to moglaluation assumes that model-simulated
and satellite-retrieved versions of physical guatiare essentially equivalent. This is of
course rarely the case in practise. This lack osstency has stimulated the development of
satellite simulators which aim to avoid the inheérambiguities between model and satellite-
derived parameters and allow us to make full us@®information content of measurements.
The greatest amount of progress in this directiam heen made by the cloud modelling
community and has led to the development of the BFbbservational simulator package
(COSP), which has already been described in previ@liverables (CMUG, 2011; CMUG,
2012). An example of using COSP, which comparesMbe Office model to five different
sensors, is shown in Figure 8.
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Using satellite simulators obviously means that pansons between models and

observations — including the use of uncertaintiethen take place in the space of the
simulated radiances, radar reflectivities, lidackszatter, etc, rather than derived quantities
such as cloud fraction or cloud top altitude. Tdlesarly has potentially important implications

for the types of data sets required by the climatelelling community.

(a) HIGH CLOUDS : GCM + LIDAR SIMULATOR (b) HIGH CLOUDS CALIOP

Figure 7: Comparison of the IPSL climate modelt{lahd the GCM Oriented CALIPSO Cloud
Product (right) for high-level, middle-level andadevel clouds.[From Chepfer et al., 2010]

2.5 High resolution modelling

An important current development in climate moadglis the move to much higher grid
resolutions, both horizontal and vertical. Sometresnhave already submitted versions of
their models at horizontal resolutions as high@e2to the CMIP5 archive and this tendency
will undoubtedly increase over the coming years &mdCMIP6. The development of the
CORDEX (COordinated Regional climate Downscalingp&xment) international project is
also fostering the development of regional climataelling at horizontal resolutions that are
commonly of order 50km but including several intenparison exercises at higher resolution
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Figure 8. Observational and COSP diagnostics avedagver the Southern Ocean (40°-70°S) for the DJF
season. Shown are (left) the observational redaitfive sensors and the equivalent COSP diagnetin two
versions of the Met Office model referred to agi(fta) GA2.0 and (right) GA3.0. The histograms show
frequency of occurrence in each bin (0-1). The IBA@ODIS, and MISR histograms are normalized by the
total population of the histogram (i.e., the sunalbthe bins gives the total cloud fraction), wias the
CloudSat and CALIPSO histograms are normalized-bydevel. [From Bodas-Salcedo et al., 2012]
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up to 12km as in MedCORDEX:igure 9 shows an illustrative example of the newt M
Office global climate model run at a range of reiohs from 135km down to 12km. Clearly
there is increased regional detail as the resolutioreases but is this detail plausible and how
can we verify this?

If we are to both examine the potential benefiténafeased resolution and use such models
for projections we clearly need to evaluate thenf@grmance using reliable observational data
sets with appropriate uncertainties. A key pointhiat simply averaging or interpolating to
different grids is unlikely to be adequate and wk pvobably require versions of data sets at
multiple resolutions each with their own uncertgiestimates, taking into account sub-grid
variability, for example.

Summer 2005 JJA rainfall (mm/day) Summer ZDDS JJA rainfall (mm /day)
135km resolution r 60km resolution

L] 0.2 0.8 1.5 25 5 15 0 0.2 08 1.5 25 5 15

Summer 2005 JJA rainfall (mm/day) Summer 2005 JUA rainfall (mm/day)
for 40km resolution for 25km resolution

L] 0.2 0.8 1.5 25 5 15 0 0.2 08 1.5 Z5 5 15

Summer 2005 JUA rainfall (mm/day) Summer ZDDS JUA rainfall (mm /day)
17krn resoluhon r 12km resolutlon

° 02 08 15 25 5 15 [ 02 08 15 25 B 15
Summer 2005 JJA roinfall (mm/doy)
for TRMM

Figure 9: Simulation of seasonal mean rainfall 83A 2005 using the Met Office climate model run at
a range of horizontal resolutions: 135 km, 60 khk#, 25 km, 17 km, and 12 km. Also shown are
TRMM observations of rainfall (bottom left) for tt@me season. Note that this is a version of the
model which is currently under development ancctimaparison is shown for illustration only.
[Courtesy Malcolm Roberts, Met Office Hadley Cehtre
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2.6 Summary

A central aim of the CClI is to address the requests of the climate modeling community

and to increase the use of ESA-derived data set$irngte modelers generally. In addition, a
key deliverable for all of the projects is to produeliable uncertainty estimates for each of
the variables they derive. The above discussioralmed to highlight the following points:

- Climate modelling requirements are multiple andheéwng, often quite rapidly, and
will certainly continue to evolve over the lifetinoé the CCI.

- The previous “one size fits all” approach, i.e. giyymatching monthly mean Level-3
products to presumed model equivalents, is now palyof what model evaluation
entails.

- Multiple data sets, e.g. at different temporal/gpaesolutions, with appropriate
uncertainties, may be required for certain appbcest

- More systematic intercomparisons of different dats within the context of specific
applications are required to measure the strengtlaghesses of the different
reconstructions.

- In some circumstances data sets produced spekifiosdddress modelling
applications may be needed.

- Use of the forward modelling or simulator appro&cincreasing: observation groups
should be encouraged to consider the developmeaypmbpriate simulator modules
in collaboration with modelling community.

- Itis important to consider structural uncertaimtyen deriving observational data sets
(e.g. multiple realisations of the retrieval algloms with different settings/choices),
and this is considered essential for applicatiath @s detection and attribution of
climate trends, in particular the contribution lo¢ tuncertainties in the homogenization
processes.

The principal uses of observational data in climmatelelling discussed here are:

- Model development and evaluation, including impngvphysical parameterisations.

- Development of reliable metrics for multi-modelantcomparisons.

- Detection and attribution of climate change anddse

- Testing the benefit and utility of increasing morkdolution at both global and
regional scales.

In addition we can also include seasonal-to-decpdadiction and the generation of model
ensembles. In the former, this generally involveismg the observations as part of the process
of generating the initial analyses, so that théusion of uncertainties is handled in a similar
manner to numerical weather prediction. The latdrasically self-explanatory and includes,
for example, producing multiple model simulatiorsng boundary conditions (SST, land
cover, etc) derived either from different data setfom several realisations of the same data
set.

The key message is that we potentially need toidensall of these climate modelling

applications when constructing observational datés sand determining the associated
uncertainties. We also stress the requirementdmtighly assess both available and future
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observational data sets in order to determine thetability for assessing the performance of
climate models.

3. Treatment of uncertainties in reanalyses

This chapter describes some key issues and chafieimgthe production of high-quality
climate reanalyses. The methodologies and tootscdrabe used for data quality assessment
are discussed with a focus on homogeneity (e.gte@lto changes in the observing system,
including calibration issues) and uncertainty (eagcuracy and precision related to
measurement error, processing methods, etc.).

Reanalysis makes use of advanced statistical methodassimilate observations from

multiple sources into a state-of-the-art atmosghddrecast model. This generates a
physically and dynamically coherent global datasgtically extending over several decades
and containing estimates of many essential cliwateéables (ECVs). The use of a model-

based data assimilation technique ensures thatE(D¥ estimates are consistent with

observations, but also with the laws of physicq] #rerefore with each other. Since it is

produced with a single version of a data assinoilaiystem, a reanalysis is more suitable for
climate monitoring and climate research generatlgnt archived weather analyses from
operational forecasting systems.

3.1 Uncertainties in reanalysis

Users often view reanalysis data as a “true reptasen of the atmosphere according to
observations” or simply “observations”. In fact,amalysis combines inaccurate and
incomplete observations with imperfect models, gsimethods and procedures that are
technically and scientifically complex. A realistmalysis (as in true to nature) is possible
only if the degrees of freedom in the modellingteys can be adequately constrained by
available observations. The actual impact of amgmiset of observations on the reanalysis
depends on many factors, including limitations bk tforecast model used for data
assimilation, the choice of analysis method, amddéscription of error characteristics of the
data. It also depends on various choices and assmumapmade in the technical
implementation of the reanalysis system (e.g. pcoda in parallel streams).

The use of atmospheric reanalysis data for clinshBenge assessment has been, and still is,
somewhat controversial (e.g. see Thorne and Vo%6,2{hd comments by Dee et al 2011a).
This is due to well-known difficulties with the negsentation of low-frequency variability in
reanalysis. Early generations of reanalyses, asasedome recent ones, show spurious shifts
and other artefacts that can be identified withngjes in the observing system, improper use
of observations, transitions between multiple poiidun streams, or various mistakes that can
occur in a complex reanalysis production. Considerprogress has been achieved in this
area in recent years, mainly due to advances ia asdimilation related to the treatment of
biases in satellite observations (Dee and Uppal®Rdt has been demonstrated that near-
surface temperature and humidity anomalies estonatan reanalysis data closely match
those obtained independently from station obsesmati(Simmons et al. 2004, 2010), and
reanalysis data have begun to be routinely useaksess global climate change, e.g. in the
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annual State of the Climate special issues of thketih of the American Meteorological
Society (SOC 2010; 2011; 2012).

It is always preferable to verify trend estimatesived from reanalysis by comparing with
independent data sets, but in many cases it ipos#ible to do so. Users must be aware that
the accuracy of trend estimates (and the concledioey lead to) can differ greatly from one
reanalysis to another, depending on the data dasioni methodology used and choice of
observing system. Reanalysis is a relatively yoiigld that has seen rapid progress in recent
years. For example, Paltridge et al. (2009) shathatspecific humidity in the NCEP/NCAR
reanalysis had a negative trend with time. Basedhs) they cast doubt on the general
consensus that the global water vapour feedback strasgly positive (e.g. Dessler and
Sherwood, 2009). Dessler and Davis (2010) analgeséral reanalysis datasets and found
that the NCEP/NCAR was the only one affected byhrsunegative trend. They suggested as a
possible explanation the fact that the specific idityh field in the NCEP/NCAR reanalysis
was only constrained by radiosonde humidity obgserma, whereas humidity fields in more
recent reanalyses are additionally constrainedheyassimilation of satellite radiances.

In general, uncertainty assessment for specifialbas estimated by reanalysis involves the
following questions:

* How strongly is the variable constrained by obseowna? Is it directly or indirectly
observed? How accurate are the constraining oltsemg&

 What is the spatial and temporal distribution of #ssimilated observations? How
does this change in time?

 How accurately can the assimilating model represie@atvariable? Does the model
have skill in extrapolating and/or predicting it?

Climate users interested in the quality of low-freqcy variability and/or trend estimates
need to consider these aspects throughout the pgimned in question. In particular, the
complexity of the observing system and its evolutaver time, associated with changing
biases in observations, can introduce spurious fleguency signals in the reanalysis.
Unfortunately many users do not have access tdceuft information in order to fully
address the difficult questions listed above. QGndther hand, producers of reanalysis data do
not have the resources (nor the application-spekifowledge) to answer them either. Part of
the solution is to provide better tools and infotima systems to support users in making their
own uncertainty assessments. In particular, it khbe made much easier for a user to get
detailed information about the observations usedraanalysis, including the quality
assessment and any adjustments produced by thedysiarprocess itself.

In summary, limitations and caveats of reanalysilpcts mainly result from

» Lack of observations. The atmosphere is not nowerer has been, fully observed.
» Errors in the observations, and lack of informatinout those errors.

* Shortcomings in the assimilating model, and lackfdrmation about model errors.
* Shortcomings in data assimilation methodology.
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» Technical errors and mistakes in reanalysis prooict
« Computational limitations (e.g. limitations in siphtand temporal resolution)

The most important of these items are due to ladckformation; there are fundamental
limitations as to what can be achieved with incaetgpbbservations and imperfect models.

3.2 Quality of input observations

Ultimately, and apart from all technicalities, thiainable realism of a reanalysis depends on
the quality of the input observations used, andtlom available information about their
uncertainties. Especially in the modern observiagaa (i.e. in recent decades), the accuracy
of current reanalysis products such as ERA-Intéb@e et al. 2011b) is sufficiently high that
observations must meet strict quality requiremérafore they can be usefully assimilated.
The key requirements are:

* The relationship between the observations and tbdeimstate variables must be
accurately represented in the observation operator;

* The errors in the observations must be sufficiemiBll understood to allow their
statistical characterization, e.g. in terms of &&and error covariances;

» Adequate quality control and bias correction praced for the observations must be
available;

* The remaining signal in the observations (i.e.rajtelity control and bias correction)
must add useful information to the reanalysis.

Reanalysis provides a useful framework for assgstfia quality of ECV products derived
from different components of the global observirygtem. This is illustrated in figure 10
which compares the relative departures of ozonecamdmations retrieved from several
instruments from their collocated ERA-Interim ozaralyses, at 10 hPa in the tropics. This
type of comparison gives confidence on the qualitthe reanalysis and of the data, but also
helps spotting issues. An example is the compangtmn SCIAMACHY limb data in figure
11, which differs from ERA-Interim estimates by 40While the reasons for such large
differences are not yet clear, residuals of thigmtade were only seen around 10 hPa in the
tropics. The level of agreement between SCIAMACHIYIH ozone profiles and the ERA-
Interim ozone analyses was better than 10% inekeaf the tropical stratosphere and at all
levels in the extra-tropics.
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Figure 10: Relative mean difference between the-ER&im ozone analyses and reprocessed ozone
data from several instruments (as given in the helgevhere SCIA is a short name for SCIAMACHY
limb ozone profiles) at 10 hPa in the tropics otrex period 1989-2012. With the exception of MIPAS
during the period 2003-20040ne of the ozone data was assimilated in ERA#NntéThe calculation has
been done as described in Dragani (2011). Theiplah adaptation of figure 5 (panel d) of Draga0(1).
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The absolute observation minus reanalysis residtaisalso be used to assess observation
errors, e.g. using approaches such as the trifilecation method (e.g. Janssenal., 2007) —
but this requires that at least two sets of da¢eaamailable in addition to the reanalysis.

For observations that are assimilated in a reaisalfee reanalysis provides a continuous on-
line observation-model confrontation. In that cabe reanalysis output is clearly not
independent of the observations. Neverthelessjdkes assimilation process itself generates a
wealth of information about the uncertainties ire timput observations. For example,
inconsistencies among the different sources of @zoformation used in the reanalysis would
be clearly visible in figure 10. More interestinglyhe sequential time-stepping data
assimilation procedure used to generate the resinaipvolves production of a short
(typically 12-24 hours) forecast to provide a fiediction of all observations used in the
next analysis step. This so-called background eséirdepends only on past observations, and
is therefore independent of the observations usethé next analysis. The “background
departures” or observed-minus-forecast residuasstored and can be used for posterior
statistical error analysis.

The background departures generated during datmikden are part of the “reanalysis

feedback”, which may also include estimates of olz@n bias generated during the
reanalysis (see next section), and output of thenaated quality control embedded in the
reanalysis. The reanalysis feedback is an impomesburce for data quality assessment,
which can be exploited to improve the descriptibmnput data uncertainties for subsequent
reanalyses. Various methods are available to esiraaor covariances from background
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departures, e.g. see Dee and da Silva (1998), astbBlers (2006). Reanalysis feedback has
also been used to detect breakpoints in uppeeraipérature data from radiosonde stations,
resulting in demonstrable improvements in the hist@diosonde record (Haimberger 2007).

3.3 Treatment of biases in reanalysis

The requirement for a realistic low-frequency vhilisy in climate reanalysis means that
special efforts must be made to remove biases thennput observations as well as from the
assimilating model. Systematic errors in any of itiut sources inevitably introduce biases
in the reanalysis. Most observations in fact regjgirtbstantial adjustments for bias before they
can be usefully assimilated. Standard data asgionlamethods (such as the Four
Dimensional Variational data assimilation schemB;\dar, used in ERA-Interim) were
originally designed under the assumption that a@irailated observations have well-
characterised uncertainties resulting from randorarg only. It has been only recently that
data assimilation has become “bias-aware” (Dee5R00

Treatment of biases in satellite observations igeesglly critical. Systematic errors in
radiance measurements reflect the complexity ofrtbieuments and the indirect nature of the
measurement, and can include large-scale flow-dbg#ncomponents. In addition to the
effects of instrument and calibration errors, béagesatellite data assimilation can result from
systematic errors in the radiative transfer motieds are either embedded in the assimilation
system as in the case of level-1b data (radiarsgijndation or in the retrieval scheme in the
case of derived data (retrieval) assimilation.slimportant to recognize that it is generally
preferable to assimilate radiances rather thanievelis. The reason is that error
characterization of derived products, which includéditional information to the raw
measurements, is much more difficult. The imporgaraf this principle was clearly
demonstrated in the 1990s with the developmentaoftional data assimilation methods at
ECMWEF and at NCEP, which resulted in major improeets in weather forecasting (e.g.
Rabier et al., 2000).

A reanalysis assimilates a large volume of obsemat from different sources, often
constraining the same model variable. It is notsual that these different sources of
observations are biased one with respect to anoiles is particularly the case for satellite
data that now represent the vast majority of alktexy atmospheric observations. Space
agencies and other data providers are now investibgtantial efforts to reprocess the raw
measurement data from satellites in order to remoier-satellite biases and generally to
improve the information content of the data (el Global Space-Based Inter-Calibration
System project; more information about the GSICSojgmt can be found at
http://www.star.nesdis.noaa.gov/smcd/spb/calibrditos/GSICS).

It is now common practice in data assimilation $e bias predictor models to estimate (and
then remove) systematic errors in the assimilatesevations. Whether observations are
assimilated in the form of radiances or retrievigjr bias varies in space and time, and may
also depend on atmospheric conditions at the thmeg twere observed. To account for this
complexity, bias is typically represented by a prent model involving properties of the

observed atmospheric column (such as the integtapes® rate) as well as the state of the
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instrument (such as its field of view). The biaghe input observations is then described by a
relatively small (say, < 10) number of parametessich are the unknown coefficients for the
predictor model. These bias parameters can be astihseparately for each channel, for
example, by regression to some reference datasetigtdnd Kelly, 2001).

In ERA-Interim, the estimation of bias parameteps $atellite radiance data is handled
automatically by a variational bias correction syst(Dee and Uppala 2009). This system
detects the appearance of a new satellite datnstr@nd it then initialises, updates, and keeps
track of bias estimates for radiance observatioms fall channels for each sensor flying on
the satellite. The bias parameters are updatedgieach analysis cycle by including them in
the control vector used to minimise the 4D-Var chstction. This ensures that the bias
estimates are continuously adjusted to maintairsisteancy of the bias-corrected radiances
with all other information used in the analysis,ievhincludes the conventional observations
as well as the model background. An important pracadvantage of this approach is that it
removes the need for manual tuning procedures, hwhie prone to error and simply
impractical in the modern age.

Figure 11 shows an example of temporal consistamcyhomogeneity of the bias corrected
observation minus the ERA-Interim model backgrodegartures (top panel) computed for
the Microwave Sounding Unit (MSU) channel-2 rades@own by several NOAA satellites
over a period of over 30 years. The bias correstiapplied to each instrument, to achieve
such homogeneity, are plotted in the bottom palmsitruments on different satellites are
biased relative to each other and differences eaasldarge as 1.5K in brightness temperature.

Global mean background departures for MSU channel 2 radiance observations
0.5 : ' .

—05 : H : : : H H
1982 1986 1990 1994 1998 2002 2006 2010

Global mean bias correction for MSU channel 2 radiance observations

0.6
0.3
0
-0.3
—0.6
-0.9
-1.2

1982 1986 1990 1994 1998 2002 2006 2010
Figure 11: Bias-corrected radiance measurementsmfrdMicrowave Sounding Unit flown on
successive NOAA satellites (top panel; coloursciaid different satellites). The global mean bias
corrections for the MSU data, produced by the Wizl analysis in ERA-Interim, account for
calibration differences, orbital drifts and varioasher instrument errors (bottom panel).

Successful examples, such as the one presentégune fL1, increase the confidence in the
latest reanalyses to address well-documented camaéion of climate signals by changes in
the observing system and possibly to accuratelylsita the long-term trend in those signals.
However, users need to be cautious when using Iysamdata for climate change assessment.
Temporal variation in the observational constra@ still produce, in some cases, atrtificial
shifts in the reanalysis time series - especiallige assimilating model has systematic errors -
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even when using bias-corrected observations. Deg& Wdppala (2008)discussed a
stratospheric example, reproduced in figure 12 #tmiws how changes in the observing
system (in this case the switch between SSU and WY affected the ERA-Interim
stratospheric temperature in summer 1998. The disgoty in the upper stratosphere (at 5
hPa and above) occurs because the assimilatinglrhadelarge temperature biases there,
while the two instruments with different measuretn@haracteristics can only partly
counteract those biases.
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Figure 12: Globally averaged analysis increments dpper-stratospheric temperature (30 hPa and
up) in ERA-Interim during 1998, when the switchir8SU to AMSU-A took place. Courtesy of Dee
and Uppala (2008).
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This example is typical of a situation where thedeloperforms relatively poorly and the

observing system is sparse; in this case no additioformation is available to improve the
estimates.

3.4 Additional benefits (and challenges) in using a complex reanalysis system

The complete description of a physically plausialmosphere consistent with observations
provided by reanalysis makes it possible to do mtamgs that simply cannot be achieved
otherwise. For example, it permits estimation dhige set of climate variables, even for
variables that are not well observed, e.g. strétesp winds, radiative fluxes, root-zone soill
moisture, etc. These estimates are important becdney are indirectly constrained by the
observations used to initialise the model. An exXamyp detailed diagnostics of the global
energy budget and the hydrological cycle (Trenbethal. 2011). Such diagnostics are
especially useful if they involve known time-invamt properties of the climate system. These
are (usually) conserved by the assimilating model reanalysis, but tend to be destroyed by
the assimilation increments, depending on the patfithe observational constraints and on
the method of assimilation. Budget diagnostics lbarused to demonstrate shortcomings as
well as progress in climate reanalysis (Berrisfer@l. 2011). In other cases, it facilitated the
assessment of inter-related fields to check thaisistency.

The drawback, however, is that in the absencerettdbbservations it is difficult to quantify

the uncertainties in estimates of model-generatedbles, as they depend on errors in the
model as well as on the strength of the (indirebgervational constraint. Some insight into
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the uncertainties can be obtained by using ensetatimiques, with the important caveat that
it is not practical to sample more than a few gelsources of uncertainty in a reanalysis.

Another potential benefit of using a complex, cegpbsystem such as that of a reanalysis is
the ability of producing adjustment in one variateile constraining a different one. This is
particularly the case of data assimilation systéased on a 4D-Var scheme. Coupled data
assimilation potentially allows for better use diservations with information about both
meteorology and e.g. aerosols or chemistry. Thesengportant advantages over uncoupled
or weakly coupled systems, in which either the rhodéegration or the analysis of
observations (or both) is performed in separatgssiéus, it represents in general a desirable
aspect of complex data assimilation systems, perihits to generate information about not
well observed fields (e.g. stratospheric winds) dssimilating observations of different
parameters (e.g. ozone), and thus estimate a kegef climate variables. The increased
complexity in the system requires a proportion@r@ase in assumptions and choices to be
made for its implementation resulting in additiorbdgrees of freedom in the modelling
system. In this case, a realistic analysis canrbdyzed only if these additional degrees of
freedom are adequately constrained by accurate\@igms. This has important implications
for climate reanalysis, since the instrumental récavailable e.g. for a reanalysis of
atmospheric composition is limited, both in quaéityd quantity.

When the observations cannot provide an adequatgramt, a negative impact can result in
the analyses. During the production of ERA-Interitnwas noticed that the assimilation of
ozone profile data retrieved from the ERS-2 GOMEtruiiment could generate large and
unrealistic changes in the upper stratospherialEtion, where the model background is not
well constrained by observations (see Figure 1Bgs€ upper-level increments provided the
most effective way for the 4D-Var analysis to acoomdate the observed local changes in
ozone concentration further below. It should bespis, in theory, to extract useful
information about advection from stratospheric éragbservations in a 4D-Var analysis. In
practice this can work well only if botthe model background and the observations are
sufficiently accurate, which is currently not these.

As a direct result of the discovery of this problenmERA-Interim, the 4D-Var analysis in the
operational forecast system was modified in 200@r&vent any changes in temperature and
wind resulting directly from the analysis of ozasegta. This change was implemented across
all applications that are run at ECMWEF, includirigp tweather forecasting system. Recent
improvements in the data assimilation system, gholg implementation of variational bias
corrections for ozone observations, have amelidrabee problem, and it is now being
investigated whether a fully coupled 4D-Var anayfsr ozone can be safely reinstated.
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Figure 13. Impact of GOME ozone profile observatiamly, in a single 12h 4D-Var cycle (4 July
1995, 0 UTC), along the latitude circle 10S for tbp 20 model levels (of a 60-level model, i.@ufr
40hPa up to 0.1hPa). Ozone increments (left pawih maximum values of about 2 mg/kg are
concentrated in locations where the satellite tracksses 10S. They are everywhere positive in this
vertical plane, because the model ozone conceatrsitiare biased low. Unrealistic temperature
increments (right panel) ranging from -6.6K to +&.8ccur at much higher levels.
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