

The Carbon Cycle and CCI: Where next?

Shaun Quegan (University of Sheffield)Centre for Terrestrial Carbon Dynamics& National Centre for Earth Observation

- The global carbon cycle and its relation to climate
- Carbon cycle models
- Focus on fire to illustrate key issues for CCI
- Challenges

Natural and perturbed carbon cycle

Perturbation of the Global Carbon Budget: 1850-2010

Global Carbon Project 2011; Updated from Le Quéré et al. 2009, Nature G; Canadell et al. 2007, PNAS

Key questions

- 1. Where are the major sources and sinks, and what is their likely long-term behaviour?
- 2. What are the key processes, and how will they change & interact in a changing climate?
- 3. What observing networks are needed to monitor and understand the carbon cycle and how does the CCI fit?
- 4. Can we manage the system?

Global distribution of sinks over the period 1982-2001 (flask inversion method)

A Posteriori Fluxes, Average July 1995 - June 2000 [gC/m2/yr]

Fossil fuels not included

Roedenbeck et al. (2003) Atmos Chem Phys Discussions 3, 2575-2659.

Global Monthly GOSAT X_{CH4} (Proxy)

XCH₄ [ppb] for November 2009

1786

1828

1870

Key features

- India/China September Rice paddies
- Alaska/Boreal Asia NH Summer Wetlands/Wildfires
- Africa/S. America Biomass burning

Updated version of Parker et al., 2011 GRL

Challenge: assimilate satellite estimates of CO2 and CH4 into climate models to improve their parameterisations.

Already in CCI through the Carbon Cycle Data Assimilation Scheme??

The C4MIP comparison of coupled models

Models

- Carbon cycle models were developed to investigate the response of the land and ocean to climate change
- Intended to be predictive, hence parameterised rather than data-driven
- Designed for a data-poor environment
- Coupled models take account of climate-carbon cycle feedbacks (major source of climate prediction uncertainty)

Global "Natural" Land Carbon Fluxes

Simplified structure of a carbon flux model

How can data affect a carbon flux model?

Essential Climate Variables

Atmospheric

- Surface Air temperature, Precipitation, Pressure, Surface radiation budget, Wind speed and direction, Water vapour
- Upper Air Earth radiation budget (including solar irradiance), Temperature, Wind speed and direction, Water vapour, Cloud properties
- Composition CO2, CH4 and other long-lived greenhouse gases (N2O, CFCs, HCFCs, HFCs, SF6 and PFCs), Ozone and Aerosol

Oceanic

- Surface Sea-surface temperature, Sea-surface salinity, Sea level, Sea state, Sea ice, Surface Current, Ocean colour, Carbon dioxide partial pressure, Ocean acidity, Phytoplankton.
- Sub-surface: Temperature, Salinity, Current, Nutrients, CO2 partial pressure, Ocean acidity, Oxygen, Tracers.

Terrestrial

• River discharge, Water use, Ground water, Lakes, Snow cover, Glaciers and ice caps, Ice sheets, Permafrost and seasonally-frozen ground, Albedo, Land cover, Fraction of absorbed photosynthetically active radiation (fAPAR), Leaf area index (LAI), Above ground biomass, Soil carbon, Fire disturbance, Soil moisture, (Land Surface Temperature)

> Red: relevant to C cycle **Bold**: predominantly space-based measurements

Estimating C Emissions from Radiative Energy

Fire Seasonality and Location

Fire location and time

Temporal Emissions Variation

Fire Radiative Energy (MJ \times 10¹⁰)

Short-Term Emissions Estimation as Model Drivers

Observed Geostationary FRP [W/m²] (red) Modelled (blue)

Burned Area, Models & Data

Burnt Area and Emissions

- 1. Is FRP consistent with GFED emissions?
- 2. Are FRP and GFED consistent with atmospheric measurements and inversion?
- 3. Models do not capture the temporal & spatial variability of fire:Does it matter for climate?

Fire as a factor in the variability of net land-atmosphere flux

For each grid cell, the model was modified to exhibit similar variability to data.

Variance of fire emissions increased but the inter-annual variability of NBP remained largely unaffected: i.e. fire is not a key control of the IAV of net boreal carbon flux.

Response of permafrost to enhanced variability in fire

More severe fires remove the insulating effect of the litter and layers, increasing the moss layer active and mobilising getting the GHGs: spatiotemporal statistics of fire wrong driver of climate causes a change to be omitted.

Perturbation of the Global Carbon Budget: 1850-2010

National Centre for Earth Observation

Uncertainty in emissions from humid tropics

Modelling the fate of carbon after disturbance

How consistent is this model schema with fire emissions data?

Integration of EO with models

Models include processes, interpolate beyond view (space, time)

Time

- Data Assimilation:
 - Uses observations to constrain/correct model variables & parameters
 - Test model processes
 - 'Improve' model forecasts

Data assimilation (DA) to improve estimates of Net Ecosystem Production

Key point: assimilation of radiance in order to control uncertainty – key for meaningful DA but poorly known for products such as LAI and fAPAR

Summary & Challenges

- 1. Using EO data to measure and understand the carbon cycle is almost entirely an issue of model-data fusion
- No new ECVs; some new sensors: Sentinels, BIOMASS (?), Carbosat (?), FLEX (?), so the issue is mainly to do better with the ones we've got
- 3. C cycle processes highly inter-connected: synergy of ECVs
- 4. Consistency of ECVs with each other and with models
- 5. Are ECVs fit for purpose? Answer is model-dependent.
 - Are models fit for purpose given the data?
- 6. Integration of EO data with in situ observations and models
 - Recent advances in data assimilation provide key route for this

