Glaciers_cci

Second CMUG integration meeting

Frank Paul and the Glaciers_cci consortium

Sciene challenges: other CCIs

- only one product (a global glacier map) that comes:
- in a completely different format (vector outlines)
- with a different standard (GLIMS vs. netCDF)
- for a different user community (slr modellers)
- using different sensors (TM, RA-2, SRTM, Palsar)
- together with a global collaboration of partners
- ... and needed to be ready by Jan 2012

Glaciers_cci challenges: Products

- What are the products that Glaciers_cci will create?
- Glacier area (a global map of the area covered by glaciers)
- Elevation Changes from **DEM differencing (EC-DEM)**
- Elevation Changes from repeat altimetry (EC-ALT)
- Velocity fields from repeat optical & microwave data
- What is the purpose of these products?
- Improvement of knowing water resources and slr contribution
- Assessment of climate change impacts on a global scale
- Modelling future glacier development under climate change

Glaciers_cci challenges: Products

- How do the products created by Glaciers_cci differ?
- input data sets: Satellites (optical and microwave), Altimeters (LIDAR and RADAR), DEMs (quality, resolution, coverage)
- data processing: fully to semi-automatic to manual digitzing
- algorithms: very simple (band ratio) to rather complex
- spatio-temporal coverage: from local to global, from 1 month repeat to 40 years merged product
- user communities: outlines, elevation change, velocity
- Response: we have the respective experts in the team / CRG

Product specific challenges I

• Area

- selection of appropriate scenes for glacier mapping from a huge archive
- global coordination of who is doing what in which region
- manual corrections required for each outline (debris, shadow, snow)
- DEM errors propagate into orthorectfication (outlines do not fit to DEM)

• EC-DEM

- co-registration, differences in spatial resolution, sensor artefacts/data voids

- considerable variation in import function from various softwares complicates generation of a standard tool (pixel corner vs. pixel centre definition)

- data accuracy dependent upon the input data (i.e. radar, lidar, photogrammetry), characteristics of the terrain and glacier at the time of data acquisition

- The larger the glacier changes and the longer time between DEM acquisitions, the more accurate/precise is the EC product

Product specific challenges II

• EC-ALT

- challenging targets for conventional altimetry
- although spatial and temporal sampling sparse, greatly exceeds ground surveys
- preparation for CryoSat-2 and Sentinel-3 datasets

• Velocity

- selection and availability of appropriate scenes, ETM+ pan / ASTER, VHR SAR / HR SAR, snow free (optical) / wet-snow free (SAR)
- DEM errors influence processing (geocoding, InSAR)
- glacier size versus matching window size

RR results area: Quickbird

RR results area: Aerial without debris

RR results area: Aerial with debris

RR results area: Landsat with debris

RR results area: Landsat debris free

RR results area: Ikonos (reference data)

RR results area: Algorithms

The algorithm applied to map clean ice does not matter, it is the interpretation of **debris cover** that determines product accuracy

RR results: DEM co-registration

An essential *universal* pre-processing step to improve accuracy (removes bias) for elevation change products from 2 DEMs

-80

-60

-20

Π

Elevation Difference

20

4<u>1</u>

60

RR elevation change: Altimetry

Radar & laser, crossover & repeat track, altimetry algorithms tested at 3 sites

RR elevation change: Altimetry

Two radar altimeter re-tracking algorithms were tested at Antarctic Peninsula

Region	Elevation rate Method 1 (cm/yr)	Sampling (%)	Elevation rate Method 2 (cm/yr)	Sampling (%)
BASIN 24	0.3 ± 7.4	13.9	3.4 ± 6.7	9.8
BASIN 25	5.4 ± 5.4	0.3	-4.3 ± 10.6	0.3
BASIN 26	-15.2 ± 18.9	0.2	no data	No data
BASIN 27	7.4 ± 7.8	2.9	-0.3 ± 4.7	2.3

RR results velocity: Algorithms

Glacier speeds over Karakoram from matching of two repeat Landsat images

Algorithm 1: Orientation correlation

Algorithm 2: Normalized cross-correlation

RR results velocity: Algorithms

Intensity-cross correlation slant-range Intensity-cross correlation azimuth Interferometry slant-range

Multiple aperture interferometry azimuth

Succes stories

- key contribution to global glacier map for IPCC
- successful RR for area and the other products
- several papers about methods already published
- review paper in Science about Himalaya glaciers
- intense public outreach activities
- very supportive network of global collaboration
- ...

Anticipated outcomes of Glaciers_cci

- A globally complete glacier inventory (level 2)
- A most important contribution to IPCC AR5
- An end-to-end processing system for EC-ALT & VEL
- A set of tools for glacier area and EC-DEM
- illustrated mapping guidelines for the community
- several more (joint) papers ...

Questions?