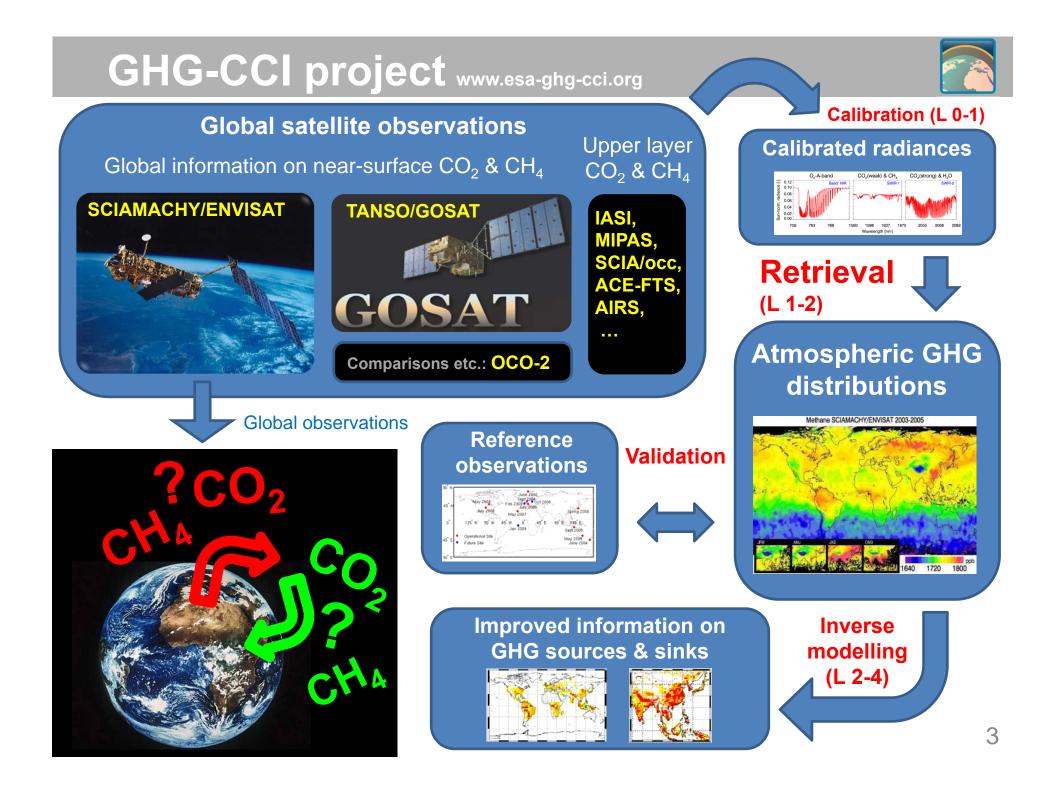

5th CCI-CMUG Meeting

GHG-CCI: Current and planned applications of data products



Outline

- Data, documentation, achievements versus user requirements
- Selected research activities
- Living Planet CCI Fellowships related to GHG-CCI
- Items to be addressed according to CMUG

GHG-CCI: Data sets

GHG-CCI Climate Research Data Package (CRDP#2)															
Product ID	Product	Years processed													
	(Level 2, mole fractions)	2002	03	04	05	06	07	08	09	10	11	12	13	14	15
GHG-CCI Core Pro			oducts	s: EC	V Cor	re Alg	gorith	m (E	CA) P	rodu	cts				
XCO2_SCIA	XCO ₂														
XCH4_SCIA	XCH ₄														
XCO2_GOSAT	XCO ₂														
XCH4_GOSAT	XCH ₄														
XCO2_EMMA	XCO ₂														
Additional Constraints Algorithm (ACA) Products															
CO2_IASI	CO ₂ (1)														
CH4_IASI	CH ₄ (1)														
CH4_SCIAOCC	CH ₄ (2)														
CO2_SCIAOCC	CO ₂ (2)														
CO2_ACEFTS	CO ₂ (2)														
CH4_MIPAS	CH ₄ (2)														
CO2_AIRS	CO ₂ (1)														
Comments:		ECA Algorithms for column-averaged dry air mole fractions:													
ACA products:			XCO2_SCIA: BESD, WFMD												
 Mid / upper tropospheric column Upper tropospheric / stratospheric profile 			XCH4_SCIA: WFMD, IMAP												
			XCO2_GOSAT: SRFP (RemoTeC), OCFP (UoL-FP)												
CRDP#2			XCH4_GOSAT: SRFP & SRPR (RemoTeC), OCPR (UoL-PR)												
Also available			XCO2_EMMA: Various (SCIA & GOSAT merged)												

Details please see: <u>www.esa-ghg-cci.org</u> -> CRDP (Data)

GHG-CCI: Documents

User **Requirements** URDv2

	ESA Climate Change Initiative (CCI)	Page 1	
ghg cci	User Requirements Document Version 2 (URDv2)	Version 2 – Final	
	for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)	28 August 2014	

ESA Climate Change Initiative (CCI) User Requirements Document (URD) for the Essential Climate Variable (ECV) Greenhouse Gases (GHG)

Written by: GHG-CCI project team

Lead author for Version 1: M. Buchwitz, IUP, Univ. Bremen, Germany Lead author for Version 2: F. Chevallier, LSCE, France

Other contributors:

 P. Bergamaschi, EC-JRC-IES, Italy . S. Houweling and T. van Leeuwen, SRON, the Netherlands

P. I. Palmer, Univ. Edinburgh

piect of ESA's Climate Change Initiative, pp. 38, version 2, 28 http://www.esa-ghg-ccl.org/

- **Processing system DARD SSD SVR**
- Algorithm descriptions **ATBDs**
- **Quality assessments CECRs**
- **Product Specification** and User Guides PSD PUGs
- Other

CRDP#2 (released April 2015):

Product Validation PVIRv3.2

User Assessments CARv2

ge initiative (CCI) Page 1
ent Report (CAR) Version 2
Gase (GHG) (Final) 22 April 2015
pe Initiative (CC) Init Report (CAR) Package No. 2 (CROP2) attest Variable (ECV) attest (CRG) Deminit Brunner ¹ , Stepfied Gonsi ⁴ , arrit Kulman ¹ , and Marina Scholte ¹¹ resonance (SCG), delibue the Initiation attest SCGG, institute the Initiation

... and many more ...

All publicly available on <u>www.esa-ghg-cci.org</u> -> Documents and / or <u>www.esa-ghg-cci.org</u> -> CRDP (Data)

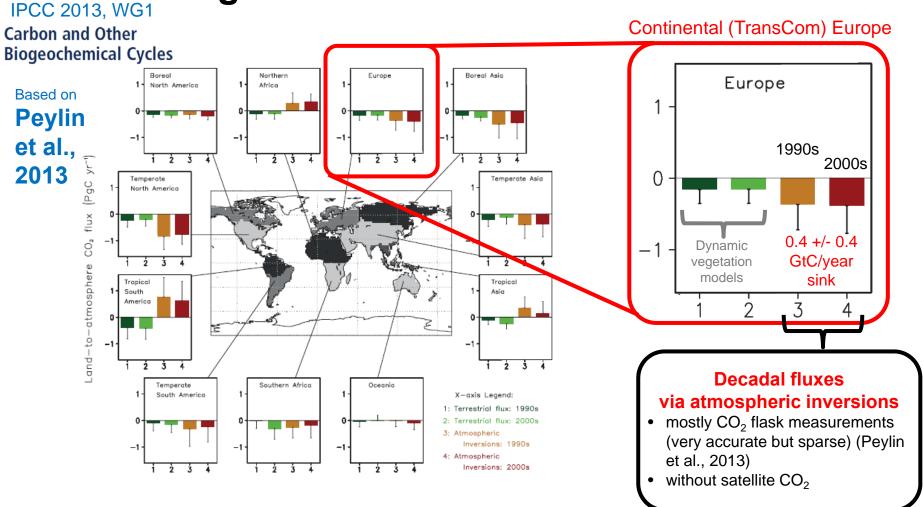
GHG-CCI CRDP#2: Comparison with GCOS Requirements

Variable ^(*)	Resolution	Accuracy	Stability ^(§§)			
XCO ₂	Temporal: GCOS: 4 hours Achieved: Days No existing nor any planned mission meets the GCOS temporal resolution requirement.	GCOS: < 1 ppm URD ^(#) : < 0.5 ppm Achieved ^(#) : 0.4-0.9 ppm ^(?) (?) Depending on sensor, time period and assessment method	GCOS: < 0.2 ppm/yr URD: < 0.5 ppm/yr Achieved: << 0.5 ppm/yr ⁽⁺⁾ (+) Derived trends not significant			
XCH ₄	Spatial: GCOS: 5-10 km Achieved ^(\$) : 10 km (\$) for GOSAT. SCIAMACHY: 30x60 km ² . URD: SCIAMACHY and GOSAT are useful to generate the ECV GHG.	GCOS: < 10 ppb URD ^(#) : < 10 ppb Achieved ^(#) : 3-8 ppb ^(§) (§) for GOSAT; for SCIAMACHY 8- 15 ppb depending on time period (degradation after Oct. 2005)	GCOS: < 2 ppb/yr URD: < 10 ppb/yr Achieved: < 4 ppb/yr ^{(!) (§§)} (!) Derived trends mostly not significant but note (§§)			
	Note: GCOS requirements are target (maximum) requirements but URD requirements listed here are threshold (minumum) requirements.	not capture certain "jumps" due t analyzing the global SCIAMACHY Estimated by comparison with T	ng a possible constant global offset) ifies only long-term drift and therefore does ue to detector issues as observed when HY XCH ₄ (e.g., IMAP product mid 2010) h TCCON ground-based observations; 0.4 ppm for XCO ₂ and 3.5 ppb for XCH ₄			

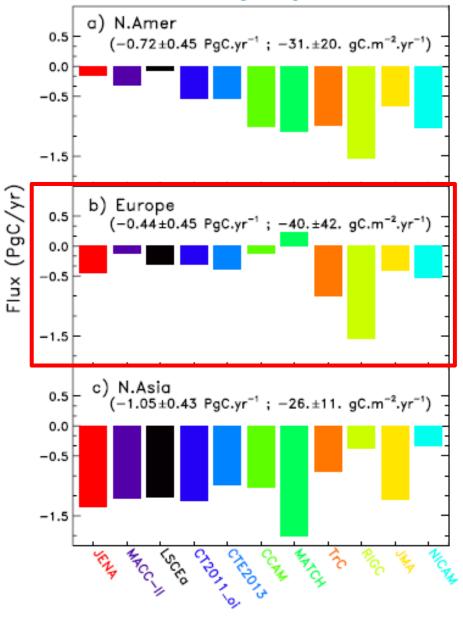
(*) Requirements for column-averaged mole fractions (= air column normalized vertical GHG columns) as required by URD; it is assumed here that this corresponds to GCOS variables "Tropospheric CO₂ column" and "Tropospheric CH₄ column"

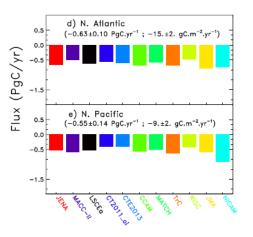
PVIRv3.2

References: Requirements for ECV Greenhouse Gases (GHG):


- GCOS-154: "SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED DATA PRODUCTS FOR CLIMATE"
- URD: "GHG-CCI User Requirements Document", v2.0 Definition: ECV GHG (GCOS-154):
- Product A.8.1: Retrievals of CO₂ and CH₄ of sufficient quality to estimate regional sources and sinks

Terrestrial carbon sink


Regional terrestrial carbon fluxes

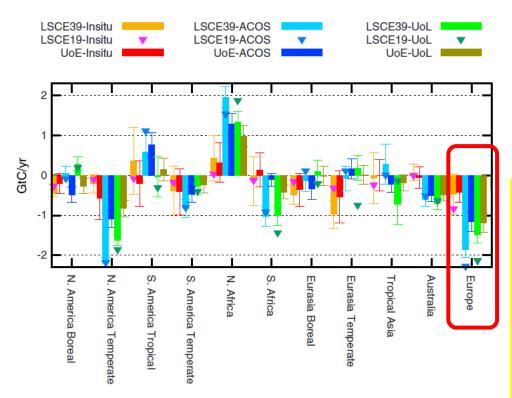


Large discrepancies models vs atmospheric inversions esp. in tropics and northern Africa & large uncertainties (~100%) !

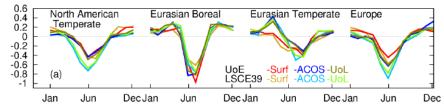
Can we do better using satellite XCO₂?

Regional carbon fluxes (Peylin et al., 2013)LandOceans

Acronym	Reference
LSCEa	Piao et al. (2009)
MACC-II	Chevallier et alal. (2010)
CCAM	Rayner et al. (2008)
MATCH	Rayner et al. (2008)
CT2011_oi CTE2013 JENA (s96, v3.5)	Peters et al. (2007) Peters et al. (2010) Rödenbeck (2005)
RIGC (TDI-64)	Patra et al. (2005a)
JMA	Maki et al. (2010)
TrC	Gurney et al. (2008)
NICAM	Niwa et al. (2012)


No satellite XCO₂ data used

CO₂ flux inversions using different **GOSAT XCO**₂ products and models



Toward robust and consistent regional CO₂ flux estimates from in situ and spaceborne Flux (GtC per month) measurements of atmospheric CO₂

Frédéric Chevallier¹, Paul I. Palmer², Liang Feng², Hartmut Boesch³, Chri and Philippe Bousquet¹

Chevallier et al., GRL, 2014

Regional natural CO₂ fluxes for 2010 Method:

- 3 inversion methods (2x LSCE (LMDZ 19&39), 1x Univ. Edinburgh (UoE))
- CO₂ surface observations and x2 GOSAT satellite XCO₂ products:
 - GHG-CCI UoL (OCFP) v4
 - NASA ACOS v3.3

Conclusions:

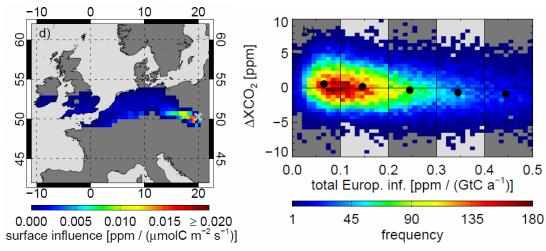
Regional flux time series:

Good agreement for phase but NOT amplitude

Annual regional fluxes:

Not considered realistic for all regions, e.g., • Europe: inferred sink "significantly too large" Possible issues / to be improved: Inversion method incl. prior fluxes and transport models, satellite data (biases to be further reduced)

European terrestrial carbon fluxes from SCIAMACHY and GOSAT - I

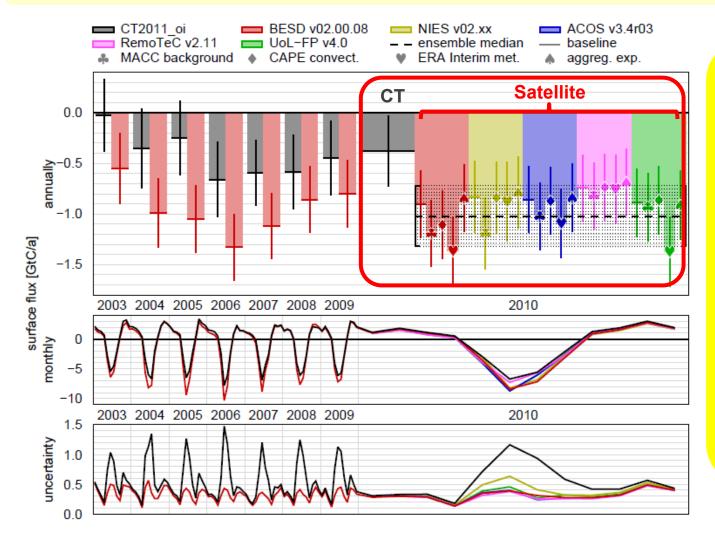

Goal: Get information on European terrestrial carbon fluxes using satellite data and a method which is not or much less sensitive to potential error sources as discussed in the literature such as

- Potential adverse impact of satellite XCO_2 biases outside of target region (e.g., XCO_2 biases ٠ over Africa due to desert dust storm aerosols)
- Potential problems related to long-range transport modelling ٠
- Potential problems related to the used satellite ٠

Approach:

Reuter et al., **ACP, 2014**

"Europe only" inversion using STILT-based short range (days) particle dispersion modelling using an ensemble of satellite XCO₂ retrievals

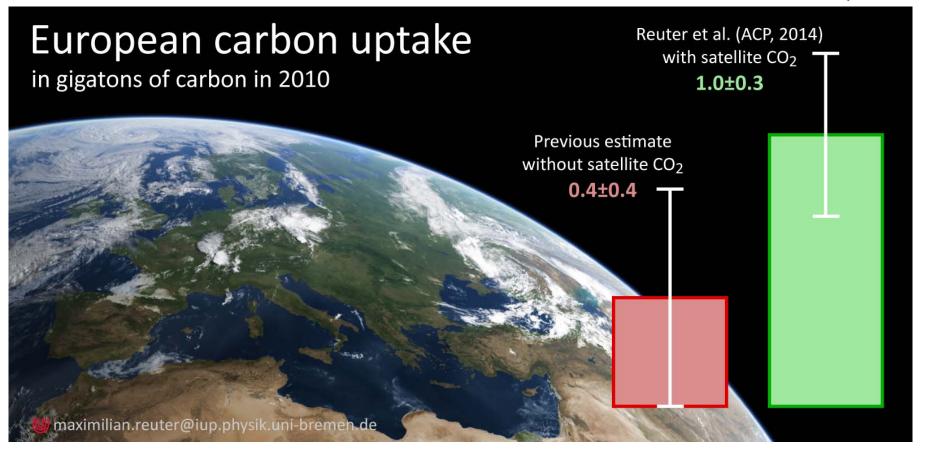

- The satellite minus model (CT2011 oi) difference ΔXCO_2 shows a negative correlation with the integrated European surface influence.
- Interpretation: CarbonTracker's European carbon sink is too weak.
- Quantitative analysis using the **optimal** estimation framework (1D-Var) to get optimized European surface fluxes considering satellite XCO₂ retrievals. 11

European terrestrial carbon fluxes from SCIAMACHY and GOSAT - II

"Continental Europe only" inversion using STILT-based short range (days) particle dispersion modelling using an ensemble of satellite XCO₂ retrievals:

Reuter et al., ACP, 2014

- 2 satellites
- 5 retrieval algorithms / products
- New flux inversion method insensitive to observations outside Europe, large-range transport & other errors
- Various sensitivity studies


Satellite data suggest a continental (TransCom) European C sink of 1.02 +/- 0.3 GtC/yr (for 2010)

European terrestrial carbon fluxes from SCIAMACHY and GOSAT - III

Summary for continental (TransCom) Europe:

Reuter et al., ACP, 2014

Related ESA webstory: Is Europe an underestimated sink for carbon dioxide ? http://www.esa.int/Our_Activities/Observing_the_Earth/Is_Europe_an_underestimated_sink_for_carbon_dioxide

Regional carbon fluxes: Ongoing activities

Atmos. Chem. Phys. Discuss., 15, 1989–2011, 2015 www.atmos-chem-phys-discuss.net/15/1989/2015/ doi:10.5194/acpd-15-1989-2015 © Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Elevated uptake of CO₂ over Europe inferred from GOSAT X_{CO2} retrievals:

a rea analy

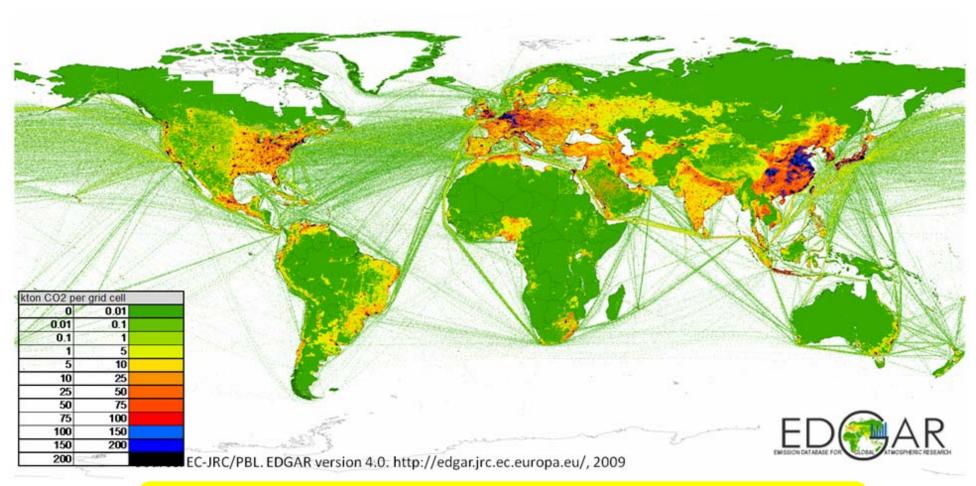
An inter-comparison of inverse models for estimating sources and sinks of CO₂ using GOSAT

L. Feng¹, I. Morino⁷

measurements S. Houweling,^{1,2} D. Baker,³ S. Basu,⁴ H. Boesch,¹² A. Butz,¹³ F. Chevallier,⁵

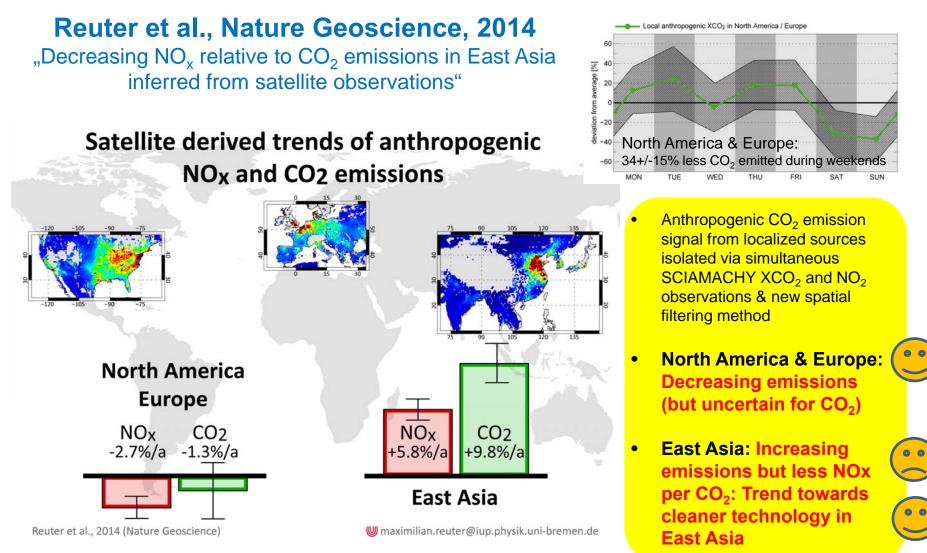
F. Deng,⁶ E. J. Dlugokencky,⁷ L. Feng,⁸ A. Ganshin,⁹ O. Hasekamp,¹ D.

Jones,⁶ S. Maksyutov,¹⁰ J. Marshall,¹² T. Oda,^{4,16,17} C. W. O'Dell,¹⁵ S.


Oshchepkov,¹⁰ P. I. Palmer,⁸ P. Peylin,⁵ Z. Poussi,¹¹ F. Reum,¹² H. Takagi,¹⁰

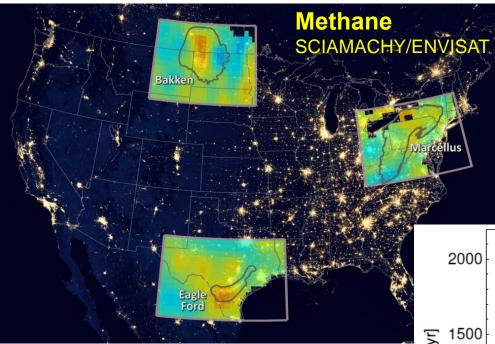
Y. Yoshida,¹⁰ R. Zhuravlev⁹

Anthropogenic emissions


Anthropogenic CO₂

Bottom-up estimate Currently not possible to verify this using satellite data !? -> We hope for CarbonSat !

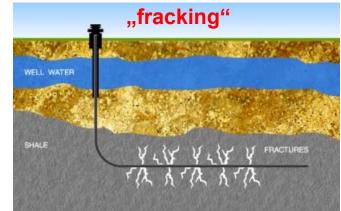
Anthropogenic emissions: Good and bad news

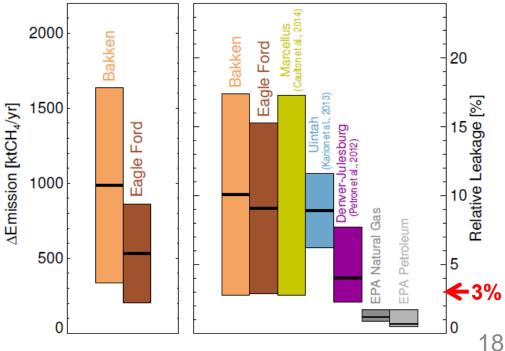


SCIAMACHY methane: Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations Oliver Schneising¹, John P. Burrows^{1,2,3}, Russell R. Dickerson², Michael Buchwitz¹, Maximilian

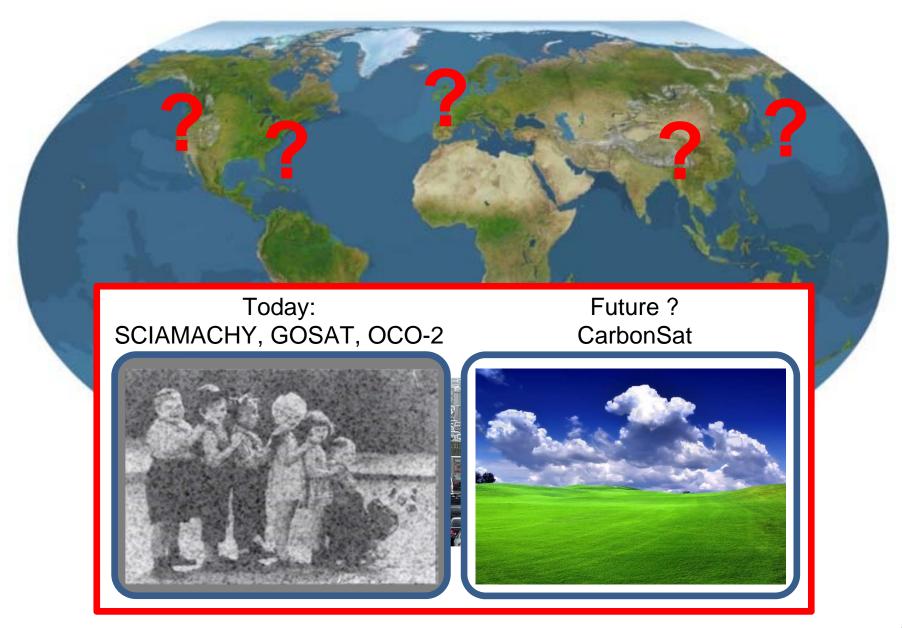
Oliver Schneising¹, John P. Burrows^{1,2,3}, Russell R. Dickerson², Michael Buchwitz¹, Maximilian Reuter¹, and Heinrich Bovensmann¹ Schneising et al., Earth's Future, 2014

Estimated emission increase 2009-2011 relative to 2006-2008:


- Bakken: 990±650 ktCH₄/yr
- Eagle Ford: 530±330 ktCH₄/yr


Emission estimates correspond to leakages of

- Bakken: 10.1±7.3% and
- Eagle Ford: 9.1±6.2%


in terms of energy content.

Exceeds 3.2% "climate benefit" threshold (Alvarez et al., 2012) for switching from coal to natural gas Likely **underestimated in inventories**.

Anthropogenic CO₂ and CH₄ emissions from space

Living Planet / CCI Fellowships

Cesa

support to science element scientific exploitation of operational missions climate

The Living Planet Fellowship Call for research proposals 2014

Programmatic Areas:

- C) Climate Change Initiative (see [URL5] and Annex B for more details):
 - Exploiting Essential Climate Variable (ECV) products generated by the ESA's CCI for improved understanding of the climate system.
- Examining Cross-ECV consistency and multiple ECV use (those under the CCI Programme in particular).

2 GHG-CCI PostDocs selected (both started 1st March 2015):

- Dr Robert Parker, UoL
 - ELEGANCE-GHG: ExpLoring thE Global cArboN CyclE through atmospheric GreenHouse Gas variability
- Dr Jens Heymann, IUP-UB
 - CARBOFIRES: CARBOn dioxide emissions from FIRES

Items to be addressed - I

1. Description of available data

- Specification:
 - Level 2 generated from SCIAMACHY & GOSAT
 - Column-averaged mole fractions XCO₂ [ppm] and XCH₄ [ppb] incl. uncertainty estimates, averaging kernels, quality flag etc. for each single ground pixel
- Validation & uncertainties:
 - Validation via TCCON ground-based XCO₂ and XCH₄
 - Random errors & stability (in the sense of long-term drifts) requirements met (but some "jumps" for SCIAMACHY due to (detector) degradation issues)
 - Systematic error requirements: At least threshold req. met for XCH₄; not (yet) for XCO₂ (use for CO₂ source/sink applications requires care; usefulness demonstrated for several applications (see publications); further improvements ongoing and needed)
- Improvement of current state-of-the-art:
 - We are the state-of-the-art and aim at further pushing it

Items to be addressed - II

2. Current and planned application of the data products

- Current:
 - To improve our knowledge on the natural and anthropogenic sources and sinks of the greenhouse gases CO₂ and CH₄
 - To improve carbon / climate / chemistry models
- Future:
 - See above
- Projects:
 - Several unfunded activities: GOSAT, OCO-2, ...
 - Currently funded: CCI-1, other ESA (2 CCI Fellowships, projects related to future satellites (S-5P, CarbonSat, ...)), MACC-III
 - Future (potentially): CAMS (ITT expected soon), CCI-2 ???, other ESA or national (S-5P, CarbonSat, other) ???, H2020 ???, C3S ???, other ???

Items to be addressed - III

3. Plans for products, delivery and engaging with climate researchers

- Products incl. delivery:
 - Focus on time series extension and improved quality
 - Updates once per year (CRDP#2 released in April 2015, CRDP#3 will be released in April 2016, ...)
- Engagements with researchers:
 - Via common projects, publications, ...

4. Common issues between ECVs

• ???

Thank you very much for your attention !

The GHG-CCI team