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WP3.4 Propagation of CCI(+) observational 
uncertainties to climate model scales  

Background and rationale:  
 

Uncertainties in climate models and 
observational references have been 
assessed thoroughly in the past. However, 
it has remained difficult to integrate these 
because of the lack of formal concepts 
that characterize uncertainties at common 
scales to both models and observations.  
 

A first framework to perform this was 
developped in CMUG-CCI for SSTs. 
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Fig. 6. Reduction of correlation skill in ECMWF S4 due to the observational uncertainty for the prediction of the month of August (initialized in 1st of May) estimated using the
correction for attenuation (Spearman, 1904). The observational uncertainty is estimated by propagating SST CCI uncertainties to monthly means in each grid-point. Grid-points
in gray denote areas where the observational uncertainty is larger than the interannual variability of the SST CCI and where as a consequence no correction for attenuation can be
calculated.

as a limited ensemble size leads to systematically lower correlation
(Ferro, 2014; Scaife et al., 2014). This reduction in correlation skill
can be estimated by dividing the sample correlation by the correction
for attenuation (Spearman, 1904),

R =
s2

o − s2
x

s2
o

, (4)

where so is the total interannual standard deviation of the ORs
and sx the observational uncertainty. The reference variability is
hence attenuated for the observational uncertainty without altering
the covariance between the model and the reference. Corrections
for probabilistic measures have also recently been proposed (Ferro,
2017). The resulting increase in the correlation skill of ECMWF S4
global SSTs is shown in Fig. 6. The skill increases in many regions up
to 0.2 and beyond, in agreement with the regions where the uncer-
tainty increases most (Fig. 5, first panel). In the poles and also regions
in the Southern Ocean, the observational uncertainty is larger than
the interannual variability of the OR and hence no attenuation can be
calculated.

4. Discussion and conclusions

Just like climate model predictions, observational references
(ORs) are subject to uncertainties. These uncertainties are usu-
ally disregarded in the verification of seasonal forecasts or the
evaluation of climate models in general. The common assumption
that limitations of the models dominate the observational uncer-
tainty persists and the role of OR limitations is therefore often seen
as minor. These assumptions are rarely assessed and individual stud-
ies suggest that observational uncertainties might be larger than
anticipated (e.g. Addor and Fischer, 2015; Prodhomme et al., 2016;

Massonnet et al., 2016). Formal concepts of how to account for obser-
vational uncertainties provided by ORs in climate model evaluation
are, however, still scarce.

In this study, we present a step forward to narrow this gap by
presenting simple ways to propagate observational uncertainties to
space-time means, a necessary step in forecast verification where
the model and OR spatial and temporal resolution do not match
each other. The solution described is independent of the data struc-
ture and is illustrated as a “look-up” graph from which propagated
uncertainties can be readily estimated. The solution assumes a con-
stant observational uncertainty in the region and under the period
considered for the space–time average and an alternative Monte-
Carlo simulation approach is suggested if this assumption is weakly
justified. Propagated observational uncertainties from the SST CCI
product are consistent with differences in different ORs over the
Niño3.4 region, yet the latter tends to be larger. Using the different
ORs as complementary estimates and the propagated SST CCI uncer-
tainty we find that the observational uncertainty contributes funda-
mentally to the forecast skill assessment of seasonal predictions of
SSTs. Particularly at high latitudes, the observational uncertainty can
dominate over other sources of verification uncertainties. However,
over most regions, the largest uncertainty in seasonal forecast qual-
ity originates from the limited period over which the hindcasts are
evaluated. The observational uncertainty is also shown to systemati-
cally reduce the correlation skill by up to 0.2 correlation and beyond.
Accounting for the increased verification uncertainty and systematic
underestimation of skill should become a future practice in order to
fully understand the utility of a seasonal forecasts.
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Uncertainties in climate models and 
observational references have been 
assessed thoroughly in the past. However, 
it has remained difficult to integrate these 
because of the lack of formal concepts 
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scales to both models and observations.  
 

A first framework to perform this was 
developped in CMUG-CCI for SSTs. 
 
 



Climate Modelling User Group CMUG | 25-07-2018 | Slide  4 

WP3.4 Propagation of CCI(+) observational 
uncertainties to climate model scales  

Bellprat et al, 2018 Plans to work with CCI+-ECVs: 
 

Expand to other ECVs relevant to study wild fires:  
 

•  Old ECVs:   fire (burned area), soil moisture       
•  New ECVs: land surface temperature  
 

Interaction with relevant teams: 
 

•  Attendance to next Fire CCI meeting 
•  Emilio Chuvieco collaborator of Etienne‘s 

MSCA on wild fires 
•  Participation to Meetings/regular telcos 
 

Consistency between ECVs: 
 

•  New metric to assess consistency across at 
least 4 variables (SST, fire, soil moisture, LST) 

•  Compare in each the importance of record 
length vs observational uncertainty 
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Fig. 4. Sub-seasonal to seasonal forecast skill of ECMWF S4 (10 members) with respect to SST CCI (dashed line). The areas show the 5–95% percentile range of the bootstrapped
(106 samples) uncertainty sources around the sample correlation skill for (a) the uncertainty in the observations assessed using the SST CCI propagated uncertainty (k = 1000
km and t = 10 days) and the ensemble of different ORs and for (b) the sample uncertainty due to a limited ensemble size and record length of the SST CCI data set. The gray area
shows the total uncertainty obtained by resampling all sources at the same time.

For longer periods, the forecast skill decreases monotonically as the
model departs from the initialization date (May 1st).

The observational uncertainty (green area) contributes about 20%
in the summer months and 50% in the first month after the ini-
tialisation with similar amplitudes for both observational ensemble
approaches considered. The observational ensemble using the CCI
uncertainty estimate tends to reduce the skill since adding obser-
vational error reduces the correlation (Massonnet et al., 2016). The
total source of uncertainty increases with time and reaches a range
of 0.7 –0.95 correlation. The ensemble size uncertainty (orange area)
remains overall small with 10 members as each member retains a
strong signal over the Niño3.4 region. The record length of SST CCI
is overall the largest source of uncertainty (blue area). Expanding
the record length of SST CCI beyond the current 20 years might
hence reduce the verification uncertainties more efficiently than cur-
rent efforts to reduce the observational uncertainties for the Niño3.4
region. The sum of all three sources of uncertainties is clearly larger
than the total uncertainty obtained by jointly sampling the uncer-
tainty due to non-linear interactions of the terms. In the Supplemen-
tary information (Fig. S1), we show that the qualitative conclusions
drawn are also valid for varying ensemble sizes and record lengths.

The example gives a regionally limited perspective and the focus
is expanded to a global view in Fig. 5 for the month of August by
comparing the relative contribution of each uncertainty source with
respect to the sum of all sources. The uncertainty related to the
length of the SST record dominates almost everywhere except in the
poles. The record length uncertainty is particularly large in regions
of high interannual variability. The observational uncertainty, sam-
pled using the CCI uncertainty estimate, is the dominant source
of uncertainty over the polar regions and contributes also in vari-
ous other regions up to 40%. The ensemble size uncertainty is the
largest over the extratropical North Pacific and North Atlantic. The
SSTs over these regions are primarily forced by the atmospheric flow
at seasonal time scales (Cayan, 1992) and therefore subject to the
atmospheric internal variability which is large in the extratropical
Northern Hemisphere. A large ensemble size is therefore required
in this region to reduce the effect of the internal variability in the
ensemble mean in this region (Scaife et al., 2014).

Finally, it is important to take into account that observational
errors not only increase the verification uncertainty but also have
systematic effects on the prediction skill. Uncertainties in a refer-
ence lower the correlation skill (Massonnet et al., 2016), similarly
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Fig. 5. Relative contribution of each source of uncertainty with respect to the sum of all sources. The relative contribution is calculated by the variance of the correlation after
resampling one source divided by the sum of variances of all sources (instead of the total uncertainty due to interaction of the individual terms).

Please cite this article as: O. Bellprat et al., Uncertainty propagation in observational references to climate model scales, Remote Sensing
of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.06.034

6 O. Bellprat et al. / Remote Sensing of Environment xxx (2017) xxx–xxx

ARTICLE IN PRESS

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ENSO Prediction (Observational uncertainty)

Month

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

ECMWF S4 | ESA CCI

Observational uncertainty CCI

Observational uncertainty mutliple ORs

Total uncertainty a

May June

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ENSO Prediction (Sampling Uncertainty)

Month

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

ECMWF S4 | ESA CCI

Ensemble size uncertainty

Record/Hindcast length uncertainty

Total Uncertainty b

July August May June July August

Fig. 4. Sub-seasonal to seasonal forecast skill of ECMWF S4 (10 members) with respect to SST CCI (dashed line). The areas show the 5–95% percentile range of the bootstrapped
(106 samples) uncertainty sources around the sample correlation skill for (a) the uncertainty in the observations assessed using the SST CCI propagated uncertainty (k = 1000
km and t = 10 days) and the ensemble of different ORs and for (b) the sample uncertainty due to a limited ensemble size and record length of the SST CCI data set. The gray area
shows the total uncertainty obtained by resampling all sources at the same time.

For longer periods, the forecast skill decreases monotonically as the
model departs from the initialization date (May 1st).

The observational uncertainty (green area) contributes about 20%
in the summer months and 50% in the first month after the ini-
tialisation with similar amplitudes for both observational ensemble
approaches considered. The observational ensemble using the CCI
uncertainty estimate tends to reduce the skill since adding obser-
vational error reduces the correlation (Massonnet et al., 2016). The
total source of uncertainty increases with time and reaches a range
of 0.7 –0.95 correlation. The ensemble size uncertainty (orange area)
remains overall small with 10 members as each member retains a
strong signal over the Niño3.4 region. The record length of SST CCI
is overall the largest source of uncertainty (blue area). Expanding
the record length of SST CCI beyond the current 20 years might
hence reduce the verification uncertainties more efficiently than cur-
rent efforts to reduce the observational uncertainties for the Niño3.4
region. The sum of all three sources of uncertainties is clearly larger
than the total uncertainty obtained by jointly sampling the uncer-
tainty due to non-linear interactions of the terms. In the Supplemen-
tary information (Fig. S1), we show that the qualitative conclusions
drawn are also valid for varying ensemble sizes and record lengths.

The example gives a regionally limited perspective and the focus
is expanded to a global view in Fig. 5 for the month of August by
comparing the relative contribution of each uncertainty source with
respect to the sum of all sources. The uncertainty related to the
length of the SST record dominates almost everywhere except in the
poles. The record length uncertainty is particularly large in regions
of high interannual variability. The observational uncertainty, sam-
pled using the CCI uncertainty estimate, is the dominant source
of uncertainty over the polar regions and contributes also in vari-
ous other regions up to 40%. The ensemble size uncertainty is the
largest over the extratropical North Pacific and North Atlantic. The
SSTs over these regions are primarily forced by the atmospheric flow
at seasonal time scales (Cayan, 1992) and therefore subject to the
atmospheric internal variability which is large in the extratropical
Northern Hemisphere. A large ensemble size is therefore required
in this region to reduce the effect of the internal variability in the
ensemble mean in this region (Scaife et al., 2014).

Finally, it is important to take into account that observational
errors not only increase the verification uncertainty but also have
systematic effects on the prediction skill. Uncertainties in a refer-
ence lower the correlation skill (Massonnet et al., 2016), similarly
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Fig. 5. Relative contribution of each source of uncertainty with respect to the sum of all sources. The relative contribution is calculated by the variance of the correlation after
resampling one source divided by the sum of variances of all sources (instead of the total uncertainty due to interaction of the individual terms).

Please cite this article as: O. Bellprat et al., Uncertainty propagation in observational references to climate model scales, Remote Sensing
of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.06.034

Record Length 
Uncertainty 

Observational  
Uncertainty 



Climate Modelling User Group CMUG | 25-07-2018 | Slide  5 

WP3.4 Propagation of CCI(+) observational 
uncertainties to climate model scales  

Bellprat et al, 2018 

Use of uncertainties: 
 
 

•  The observational error is required to compute the 
interpolation errors in space/time (which need a 
finite correlation length and correlation time scale) 

•  For case studies on prediction, we will quantify 
two additional sources of uncertainty, due to the 
record length and to the ensemble size. 

 
Mechanisms to provide feedback to ECV teams 
•  Regular channels: (e.g. Participation to Meetings/

telcos) 
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Fig. 4. Sub-seasonal to seasonal forecast skill of ECMWF S4 (10 members) with respect to SST CCI (dashed line). The areas show the 5–95% percentile range of the bootstrapped
(106 samples) uncertainty sources around the sample correlation skill for (a) the uncertainty in the observations assessed using the SST CCI propagated uncertainty (k = 1000
km and t = 10 days) and the ensemble of different ORs and for (b) the sample uncertainty due to a limited ensemble size and record length of the SST CCI data set. The gray area
shows the total uncertainty obtained by resampling all sources at the same time.

For longer periods, the forecast skill decreases monotonically as the
model departs from the initialization date (May 1st).

The observational uncertainty (green area) contributes about 20%
in the summer months and 50% in the first month after the ini-
tialisation with similar amplitudes for both observational ensemble
approaches considered. The observational ensemble using the CCI
uncertainty estimate tends to reduce the skill since adding obser-
vational error reduces the correlation (Massonnet et al., 2016). The
total source of uncertainty increases with time and reaches a range
of 0.7 –0.95 correlation. The ensemble size uncertainty (orange area)
remains overall small with 10 members as each member retains a
strong signal over the Niño3.4 region. The record length of SST CCI
is overall the largest source of uncertainty (blue area). Expanding
the record length of SST CCI beyond the current 20 years might
hence reduce the verification uncertainties more efficiently than cur-
rent efforts to reduce the observational uncertainties for the Niño3.4
region. The sum of all three sources of uncertainties is clearly larger
than the total uncertainty obtained by jointly sampling the uncer-
tainty due to non-linear interactions of the terms. In the Supplemen-
tary information (Fig. S1), we show that the qualitative conclusions
drawn are also valid for varying ensemble sizes and record lengths.

The example gives a regionally limited perspective and the focus
is expanded to a global view in Fig. 5 for the month of August by
comparing the relative contribution of each uncertainty source with
respect to the sum of all sources. The uncertainty related to the
length of the SST record dominates almost everywhere except in the
poles. The record length uncertainty is particularly large in regions
of high interannual variability. The observational uncertainty, sam-
pled using the CCI uncertainty estimate, is the dominant source
of uncertainty over the polar regions and contributes also in vari-
ous other regions up to 40%. The ensemble size uncertainty is the
largest over the extratropical North Pacific and North Atlantic. The
SSTs over these regions are primarily forced by the atmospheric flow
at seasonal time scales (Cayan, 1992) and therefore subject to the
atmospheric internal variability which is large in the extratropical
Northern Hemisphere. A large ensemble size is therefore required
in this region to reduce the effect of the internal variability in the
ensemble mean in this region (Scaife et al., 2014).

Finally, it is important to take into account that observational
errors not only increase the verification uncertainty but also have
systematic effects on the prediction skill. Uncertainties in a refer-
ence lower the correlation skill (Massonnet et al., 2016), similarly
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Fig. 5. Relative contribution of each source of uncertainty with respect to the sum of all sources. The relative contribution is calculated by the variance of the correlation after
resampling one source divided by the sum of variances of all sources (instead of the total uncertainty due to interaction of the individual terms).
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Fig. 4. Sub-seasonal to seasonal forecast skill of ECMWF S4 (10 members) with respect to SST CCI (dashed line). The areas show the 5–95% percentile range of the bootstrapped
(106 samples) uncertainty sources around the sample correlation skill for (a) the uncertainty in the observations assessed using the SST CCI propagated uncertainty (k = 1000
km and t = 10 days) and the ensemble of different ORs and for (b) the sample uncertainty due to a limited ensemble size and record length of the SST CCI data set. The gray area
shows the total uncertainty obtained by resampling all sources at the same time.

For longer periods, the forecast skill decreases monotonically as the
model departs from the initialization date (May 1st).

The observational uncertainty (green area) contributes about 20%
in the summer months and 50% in the first month after the ini-
tialisation with similar amplitudes for both observational ensemble
approaches considered. The observational ensemble using the CCI
uncertainty estimate tends to reduce the skill since adding obser-
vational error reduces the correlation (Massonnet et al., 2016). The
total source of uncertainty increases with time and reaches a range
of 0.7 –0.95 correlation. The ensemble size uncertainty (orange area)
remains overall small with 10 members as each member retains a
strong signal over the Niño3.4 region. The record length of SST CCI
is overall the largest source of uncertainty (blue area). Expanding
the record length of SST CCI beyond the current 20 years might
hence reduce the verification uncertainties more efficiently than cur-
rent efforts to reduce the observational uncertainties for the Niño3.4
region. The sum of all three sources of uncertainties is clearly larger
than the total uncertainty obtained by jointly sampling the uncer-
tainty due to non-linear interactions of the terms. In the Supplemen-
tary information (Fig. S1), we show that the qualitative conclusions
drawn are also valid for varying ensemble sizes and record lengths.

The example gives a regionally limited perspective and the focus
is expanded to a global view in Fig. 5 for the month of August by
comparing the relative contribution of each uncertainty source with
respect to the sum of all sources. The uncertainty related to the
length of the SST record dominates almost everywhere except in the
poles. The record length uncertainty is particularly large in regions
of high interannual variability. The observational uncertainty, sam-
pled using the CCI uncertainty estimate, is the dominant source
of uncertainty over the polar regions and contributes also in vari-
ous other regions up to 40%. The ensemble size uncertainty is the
largest over the extratropical North Pacific and North Atlantic. The
SSTs over these regions are primarily forced by the atmospheric flow
at seasonal time scales (Cayan, 1992) and therefore subject to the
atmospheric internal variability which is large in the extratropical
Northern Hemisphere. A large ensemble size is therefore required
in this region to reduce the effect of the internal variability in the
ensemble mean in this region (Scaife et al., 2014).

Finally, it is important to take into account that observational
errors not only increase the verification uncertainty but also have
systematic effects on the prediction skill. Uncertainties in a refer-
ence lower the correlation skill (Massonnet et al., 2016), similarly
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Fig. 5. Relative contribution of each source of uncertainty with respect to the sum of all sources. The relative contribution is calculated by the variance of the correlation after
resampling one source divided by the sum of variances of all sources (instead of the total uncertainty due to interaction of the individual terms).
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WP3.7 Evaluation of the impact on skill of 
an enhanced SIR on seasonal prediction  

People involved: Pablo Ortega 
Juan Acosta 

Rubén Cruz-García  

Cruz-García et al, In Prep. Background and rationale:  
 

The analysis of a previous reconstruction 
of sea-ice performed within the CMUG-
CCI has highlighted that the accuracy of 
assimilation can be limited by the 
uncertainty of the assimilated products, 
and also by the frequency of each 
assimilation phase.  

Pan-Arc(c	Sea	Ice	Extent	
May	through	October	
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May

(a) (b) (c)
Recon-ESA Day 1 Recon-ORAS Day 1 Recon-NSIDC Day 1

(d) (e) (f)
Pred-Recon Day 1 Pred-Recon Day 2 Pred-Recon Day 3

(g) (h)
Hist-Recon Day 1 Hist-NSIDC Day 1

Figure 2 – (a) Di�erence between the NEMO-only sea ice reconstruction and the ESA data
used for the assimilation (1993-2008) the 1st of May. Dots represent the bias values that
observational uncertainty cannot explain. (b) Di�erence between the NEMO-only sea ice
reconstruction the 1st of May. (c) NEMO-only minus NSIDC-NASATeam. (d–f) Di�erence
between the forecasts initialized in May and the NEMO-only sea ice reconstruction (from
which we produced the initial conditions).

2

Cruz-García et al, In Prep. Background and rationale:  
 

The analysis of a previous reconstruction 
of sea-ice performed within the CMUG-
CCI has highlighted that the accuracy of 
assimilation can be limited by the 
uncertainty of the assimilated products, 
and also by the frequency of each 
assimilation phase.  
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according to its limited significance (Fig. 4f) as com-
pared to December–January (Figs. 4b,d). The cross-
validated skill patterns of winter SAT and precipitation,
although showing positive scores over Europe, do not
achieve 95% confidence level using October SIC/BK
(Figs. 5c,e) and only some regions exceed the statisti-
cal threshold using November SIC/BK (Figs. 5d,f).
Note that although there are large areas of significant
linear correlation with the MCA-SIC/BKNOV expan-
sion coefficient (thin colored line), the prediction skill
is limited (thick black line). Nonetheless, this statisti-
cally significant skill of SAT over the central-western
Mediterranean basin and of precipitation over the
Iberian Peninsula represents the first hint that statis-
tical predictions of winter European climate based on
sea ice variability over the Barents–Kara Seas in
middle-to-late autumn could be skillful. These results
from empirical hindcasts support the recent finding

from dynamical hindcasts (Scaife et al. 2014) that sea
ice variability over the eastern Arctic in November
can be regarded as a predictability source for winter
climate conditions in the Euro-Atlantic sector.
On the other hand, October SIC/BK yields statisti-

cally significant skill of SLP over northern Eurasia
(Fig. 5a), which might be related to processes that
are not present in the relationship between November
SIC/BK and the winter NAO (Fig. 5b). Likely associ-
ated with the SLP skill, cross-validated hindcasts using
October SIC/BK also provide some significant skill for
SAT in central Eurasia (Fig. 5c), but not for pre-
cipitation (Fig. 5e). These results are in agreement
with Mori et al. (2014), who have found that recent
cold winters in Eurasia are related to recent reduction
of sea ice in the Barents–Kara Seas and more frequent
Eurasian blocking, but not to the winter NAO. It is
worth noting that the SLP skill of October SIC/BK

FIG. 3. As in Fig. 2, but for November SIC anomalies.
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García-Serrano et al, 2014. 

WP3.7 Evaluation of the impact on skill of 
an enhanced SIR on seasonal prediction  

Expected outcomes: 
Improved skill over the Arctic and beyond  

Plans to work with CCI+-ECVs: 
 
 
 

•  Directly assimilated: SIC 
•  Nudged: SST (to be considered) 
•  Analyses: SIT, clouds and potentially salinity 
 

Interaction with relevant teams: 
 

•  Regular channels: (e.g. Participation to 
Meetings/telcos) 

 

Consistency between ECVs: 
 

•  Forecast evaluation against other CCI 
products (such as SST, SIT and Clouds)  

•  Testing if skill is improved when CCI SIC/SST 
data is included in the ICs.  
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García-Serrano et al, 2014. 

WP3.7 Evaluation of the impact on skill of 
an enhanced SIR on seasonal prediction  

Expected outcomes: 
Improved skill over the Arctic and beyond  

Use of uncertainties: 
 
 

•  The observational error is a required input for 
the ENKF Assimilation 

•  Uncertainty will be addressed in the forecast 
evaluation by comparing with other 
observational products available 

Mechanisms to provide feedback to ECV teams 
•  Regular channels: (e.g. Participation to 

Meetings/telcos) 
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SIC/BK and the winter NAO (Fig. 5b). Likely associ-
ated with the SLP skill, cross-validated hindcasts using
October SIC/BK also provide some significant skill for
SAT in central Eurasia (Fig. 5c), but not for pre-
cipitation (Fig. 5e). These results are in agreement
with Mori et al. (2014), who have found that recent
cold winters in Eurasia are related to recent reduction
of sea ice in the Barents–Kara Seas and more frequent
Eurasian blocking, but not to the winter NAO. It is
worth noting that the SLP skill of October SIC/BK

FIG. 3. As in Fig. 2, but for November SIC anomalies.
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WP 3.10 & 3.11 - Motivations 

Current aerosol (and dust) data 
assimilation is mainly based on 
retrievals in the visible part of the 
electromagnetic spectrum, and with no 
information on aerosol speciation 
 
IASI dust retrievals have the potential to 
overcome these drawbacks. A previous CCI 
case study made by BSC showed the 
potential of IASI for dust DA but with a few 
important limitations.  

(Vries et al., 2015) 
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WP 3.10 & 3.11 - Motivations  

 
Current use of Land Cover 
information in dust models is 
provided at a coarse resolution and 
is related to green vegetation only.   
 
 
Surface characteristics are important 
for dust emissions 

(Knippertz et al. 2014) 
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WP 3.10 - Description 

WP3.10: Assessment of the potential of CCI/CCI+ data to constrain 
mineral dust simulations at the regional scale 
 
ECVs involved:  Aerosol dust and High Res LC 
 
CCI IASI dust data will be assimilated in model simulations, while CCI+ high 
resolution land cover data (once data will become available) will be used to 
enhance the NMMB-MONARCH’s land use type, with a consequent impact on dust 
emissions 
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WP 3.10 - Aims 

Aims: 
- demonstrating the use of CCI/CCI+ data to 
produce dust analyses at the regional scale;  
- assessing the synergy of CCI aerosol data 
(in particular when constraining atmospheric 
concentrations over dust source areas) with 
CCI+ land cover data (used for an enhanced 
characterization of dust emissions); 

- set the basis for the assessment activity 11 on the production of a pilot dust 
reanalysis, where the impact on dust cycles at different temporal scales will be 
evaluated; 
- providing feedback on these ECVs to the ESA CCI/CCI+ teams. 
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WP 3.11 - Description 

WP3.11: Production of a pilot dust reanalysis at the regional scale 
 
ECVs involved:  Aerosol dust and High Res LC 
 
CCI IASI dust data will be assimilated in model simulations for the reanalysis 
period. Simulations will make use also of CCI+ high resolution land cover data, 
once these will become available, in order to enhance the NMMB-MONARCH’s land 
use type. 
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WP 3.11 - Aims 

Aims: 
- producing a pilot dust regional 
reanalysis based on CCI/CCI+ data, over 
a 1 year period 
- detection of  systematic (spatial and 
temporal) patterns of data impacts on 
the dust analysis through statistics of 
innovations 
- assessing whether their integration in 
model simulations can improve the 
monitoring of mineral dust and the 
characterization of dust cycles  
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WP 3.10 & 3.11 - Interactions 

Planned interactions: 
-  CCI+ ECV teams: LC, HRLC teams 
 Initial discussions: domain, variable values&types, temporal resolution, period, format 
-  CCI ECV teams:  email discussion started with ULB (C3S ECV) 
-  External:  

-  DustClim consortium (dust reanalysis) 
-  WMO SDS-WAS hosted by BSC/AEMET 

 
 
 
Links within CMUG: Aerosol global reanalysis (ECMWF) 
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WP 3.10 & 3.11 – Expected outcomes 

A data assimilation/modelling assessment of CCI/CCI+ data will be of added value 
to the standard CCI experiments as it will provide a different perspective to the 
evaluation efforts, and will allow to assess ECVs for cross-consistency. 
 
A reanalysis assessment is able to showcase the potential of CCI/CCI+ data to 
contribute to the formulation of management and mitigation plans of different 
socio-economic sectors. A dust reanalysis in particular can be used to provide 
resources for studying the impact of dust on health, weather and climate. 
 
BSC's strong links to specific user communities through its WMO SDS-WAS 
activities can guarantee the visibility of such potential for the data considered. 
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Additional slides 
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WP 3.10 & 3.11 - Motivations 

Currently used in MONARCH (BSC model): 
Land cover type:            
- Meteorological component estimates aerodynamic roughness length (z0) based on USGS 94-
category land use and regionally (N Africa and Asia) uses 1/4x1/4 degree resolution z0 based 
on POLDER-I (Laurent et al. 2008)  
(Green) Vegetation cover fraction: 
- The meteorological and land-surface component uses USGS monthly climatology at 1km 
resolution  
- The dust module uses MODIS LAI at 0.1x0.1 degree resolution, at a monthly variation, and 
available for 2000-2015  
                          - to calculate a drag partition to correct the threshold friction velocity for  

  sediment mobilization 
                          - to estimate the erodible (bare) area for dust flux calculation  
                          - [optional] to scale dust flux 
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WP 3.10 - Actions 

Actions:  
- processing IASI dust aerosol data to follow the assimilation cycles 
- implementation of an observation operator for the thermal infrared  
- identifying optimal assimilation settings for observation error statistics and 
covariance localization 
- implementation of the use of CCI+ high resolution land cover to characterize the 
model land type 
- DA simulations on a regional domain covering Northern Africa, Europe 
and the Middle East for specific dust events (usually lasting 1 to 10 days) during 
the active dust season 
- assessment of the impact of assimilating the data during relevant dust events 
and validation with independent observations 
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WP 3.11 - Actions 

Actions: 
- production of a pilot reanalysis over the course of a specific year characterized by 
relevant dust events 
- statistical analysis of innovations throughout dust cycles at different temporal 
scales 
- reanalysis validation with independent observations 
- comparison of the dust reanalysis with other reanalyses 
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WP 3.10 & 3.11 – Scientific questions 

Scientific questions: 
- Which is the added value of assimilating thermal infrared retrievals? 
- Which is the impact of IASI data assimilation at the regional scale in high 
resolution simulations? 
- Are CCI (pixel-level) uncertainties realistic? 
- Does enhanced land type information improve the first-guess of mineral dust 
tracers, and consequently dust analyses? 
- Are the used CCI/CCI+ ECVs consistent? 
- Can CCI/CCI+ data improve aerosol reanalysis? 
- Can CCI/CCI+ data improve in particular the characterization of dust cycles? 
- How well does the regional dust reanalysis compare to global reanalyses? 
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 Pablo Ortega 
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 WP4: Exploiting CCI products in MIP experiments 



Climate Modelling User Group CMUG | 25-07-2018 | Slide  25 

WP4.7 Evaluation of probabilistic and 
deterministic skill in decadal predictions  

Background and rationale:  
 

A rigorous assessment of prediction skill 
requires cl imate predictions to be  
evaluated against different observational 
datasets, preferably independent from 
those used for initialization.  
 
T h i s i s i m p o r t a n t t o r e f l e c t t h e 
observational uncertainty, and the degree 
of coherence among the different 
products. 

People involved: Louis-Philippe Caron 
Simon Wild 

Cruz-García et al, In Prep. 

Uncertainty	in	NSIDC	
Sea	Ice	Concentra(on	Products	

40% 30% 20% 10% 0% 

1st May 1st Nov 
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WP4.7 Evaluation of probabilistic and 
deterministic skill in decadal predictions  

Background and rationale:  
 

A rigorous assessment of prediction skill 
requires cl imate predictions to be  
evaluated against different observational 
datasets, preferably independent from 
those used for initialization.  
 
T h i s i s i m p o r t a n t t o r e f l e c t t h e 
observational uncertainty, and the degree 
of coherence among the different 
products. 

Mignot et al 2016 

Decadal	predic(ons	of	AMOC	
	Strength	in	IPSL-CM5A-LR	

ORAS4	

SODA2.4	

People involved: Louis-Philippe Caron 
Simon Wild 
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WP4.7 Evaluation of probabilistic and 
deterministic skill in decadal predictions  

Plans to work with CCI+-ECVs: 
 

Multi-model extensive skill assessment of the 
DCPP predictions against longest CCI products 
 

•  CCI ECVs: Sea Level, SST and Clouds 
•  Other products more than 20 year long? 
 

Interaction with relevant teams: 
 

•  Regular channels: (e.g. Participation to 
Meetings/telcos) 

 

Consistency between ECVs: 
 

•  Focus on regions and indices for which skill is 
expected to be consistent for the selected 
variables (e.g. tropical areas, ENSO) 

•  CCI products as independent validation source 
to test consistency with initialization datasets 

DCPP Component A:  
Retrospective Predictions [1960-2017] 
 

DCPP Component B: 
Near-real time Forecasts [2018 onwards] 
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WP4.7 Evaluation of probabilistic and 
deterministic skill in decadal predictions  

DCPP Component A:  
Retrospective Predictions [1960-2017] 
 

DCPP Component B: 
Near-real time Forecasts [2018 onwards] 
 

Use of uncertainties: 
 
 

•  Uncertainties in the predictions will be illustrated 
through the use of probabilistic skill metrics, and 
by evaluating them against different reference 
datasets  

Mechanisms to provide feedback to ECV teams 
•  Regular channels: (e.g. Participation to 

Meetings/telcos) 

 


