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1 Purpose of this document

The objective of this document is to review the different methodologies to retrieve lake storage
change for lakes and reservoirs globally and with a temporal depth sufficient for climate studies and
climate modelling. It will guide the benchmarkingthat will be done in the forthcomingstep of this analysis.
This report summarises also the user requirements for the lake storage change in relation to the state of
the art.

2 State of the art of lake storage change retrieval

The following diagram depicts the different steps to estimate lake storage change of lakes and
reservoirs. The first studies of lake storage change appeared in the end of the 1990s and begun with in-
situ data of height and water surface areas and/or volume to retrieve water volume at local or regional
scale. With the increasing volume of satellite data, research since focused on the production of height
and water surface area information from remote sensing. This opened the way to the estimation of the
Lake Storage Change (LSC), but also defined the requirements in terms of surface areas and height
accuracy for the determination of a precise lake storage change estimation.

Is altimetry

. data available e
over the lake?
Lake area Lake Water Height I‘i

Hypsometric curve
. Input

. Calculation core
D Variables
LSC time series Output

Figure 1 - Pipeline proposed in the frame of the ESA CCI LSC option

Each step of the diagram is described in the following section. Therefore, the first part explores
the global water volume change estimation from power law and other polynomial calibration, fitting, or
lake variation integration. Then, we focus on the hypsometric curve estimation, first from a
geomorphological point of view, then from altimetry and surface areas applied to water volume
estimation. The two next steps detailthe different datathat can be usedforwaterlevel (i.e., altimetryand
DEM) and water surface areas. And finally, we present the perspectives in retrieving the total water
volume estimation and bathymetry.
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2.1 Lake storage change estimation

Two fields off research are combined in this work: total volume estimation and lake storage
change. The first focuses on the total water available in a water body, with uncertainties generally
corresponding to lack of information on water depth. The second deals with lakes storage change,
deduced from the relation between information of waterlevel and surface extent. This relation is always
positive, usually described by a power law or a polynomial approach. Nevertheless, total water volume
cannot be deduced from these laws directly.

In this chapter, we will focus first on direct approaches to retrieve total volume of lake and
reservoirs with power law and polynomial fitting, then, on approaches without hypsometric curves and
finally, on approaches with hypsometric curve (as used by the CCl Lakes project to retrieve Lake Water
Extent).

2.1.1 Power law and polynomial fitting for direct estimation of
volumes

A relation between small reservoir surface areas with their corresponding capacity comes from
Meigh 1995, in Botswana. Without remote sensing input and if the area A is constant foreach considered
reservoir, this is a direct attempt to relate the capacity of the reservoirs from the area following a power
calibration law (of the type V = a * AP, V being the volume, and a & b being scalar parameters).

This approach has been furthered in Liebe 2002 for 61 reservoirs in Ghana using optical remote
sensing data. After assessing water surface area from remote sensing compared with in situ data,
reservoir volume variation is derived from the water surface areas change in time. It is shown that the
logarithms of surface area and volume are linearly correlated. Nevertheless, the height-volume
relationships established are estimated from one surface area per reservoir only, and is an important
source of errors for different water surfaces areas. This shows that 1) the absence of hypsometric
consideration might lead to considerable uncertainty of estimates in volume estimation, 2) this work is
applicable for similar areas in terms of geomorphologic properties, meaning that it is not valid fora global
approach. Note that these results are slightly enhanced and improved in the following work exposed in
Liebe et al. 2005.

With static water areas (i.e., that does not represent the potential water surface area change with
time) from field and remote sensing images, Sawunyama et al. 2006 retrieved a linear relationship
between the logarithms of water surface area and water capacity for approximately 1000 reservoirs in
the Mzingwane catchment of Zimbabwe. This agrees, along with the results from Liebe et al 2002, 2005,
with the existence of a common behaviour between reservoir capacity and surface area for catchments
with similar geomorphological properties. As mentioned in the conclusion of Sawunyama et al. 2006,
results worsen for very steep valleys, and a homogeneity in the geomorphologically coherent area is
needed for the validity of these relationships (i.e., Head-Area-Volume, or H-A-V).

Once again in Ghana, Annoret al. 2009 focused onthe delineation of small reservoirs usingradar
imagery in a semi-arid environment. Followingthe work initiated by Liebe 2002, they managed to produce
volume estimates on 21 small reservoirs of the study area. They found that the values of the parameters
aand b in the power law are surprisingly constant within geomorphologically similar areas; nevertheless,
this assumption remains to be tested in other locations.

Vanthof & Kelly 2019 explored determining water storage in ungauged small reservoirs with the
TanDEM-X DEM, along with multi-source satellite observations. They established for 72 reservoirs in the
Gundar river basin (India) the Volume-Area relationship from waterless DEM (TanDEM-X) once again
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through a power law. Then from time series of surface areas, they were able to produce volume variation
time series. They also found that the values of a and b in the power law are surprisingly constant within
the same catchment; they explained this stability of the two parameters by a high similarity of the whole
area geomorphologijcally wise.

From these studies, if the power law represents a good option to represent the relation between
the area and the volume at a catchment level from various reservoirs, this approach seemsto have been
applied only for reservoirs and not lakes. This encouraging approach will be tested during the benchmark
phase. The precision of the water content of reservoirs at different levels has not been explored in detall,
but the methodology will be tested for precise water volume estimation. The geomorphological approach
and its coherence at a catchment level is an interesting characteristic that could be furthered on.

Following the use of remote sensing data, Peng et al. 2006 has shown potential to produce
reservoir volume variation time series for the Fengman dam reservoir (Songhua Lake) in Northeastern
China. They compared the results they produced with an in-situ water level - storage curve produced in
1956 during the building of this dam. They used order 4 polynomial fitting to estimate H-A and H-V curves
from altimetry and Landsat imagery. Whilst a promising approach to estimate water storage variation,
this is only tested in one lake in this one case, without justification of choosing a 4th order polynomial or
discussing the (slight) difference from the 1956 curve and the 2006 curve from remote sensing data.

- thecurvein 1956

the new curve based on RS data

Water level {m)

260 +

255 »

250 |

245

240 ¢

235 |

] ] |
Water level | 225 230 . 231 235 | 240 . 250
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Figure 2 - Comparison of the two storage curves of Fengman reservoir (Peng et al. 2006)

Duan & Bastiaanssen (2013) link water surface areas from lakes and reservoirs to altimetry data
products from existing databases, notably the Global Reservoir and Lake Monitoring (GRLM), River Lake
Hydrology (RLH), Hydroweb, ICESat-GLAS level 2 Global Land Surface Altimetry data (ICESat-GLAS). They
introduced the Water Volume Above the Lowest water Level (WVALL) concept, and tested it overthree
large lakes (Tana, Mead and |Jssel). They link water height and areas for these three lakes with a 2nd
order polynomial. Their validation procedure showed that estimated water volumes agreed well with in-
situ measurements (R2 from 0.95 to 0.99) and the root mean square error (RMSE) was within 4.6 to
13.1% of the mean volumes of in-situ measurements.” Nevertheless, this relation in this particular paper
has been tested only for very large lakes, with almost linear trends.

Table 1 - Symbolic representation of power laws for both volume and area estimations

Power law Polynomial

Volume V = cH® V =aH*+ bH?® + cH*>+dH  + ¢
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Area A = aH? A=aH*+bH3+ cH?+dH '+ ¢

With A being the water area, H the water height, V the water volume, and a, b, ¢, d and e empirical fitting
coefficients.

= As part of our planned benchmarking exercise, we will assess the accuracy of these power laws
to relate area and volume with height on test lakes.

2.1.2 Global approach for water volume estimation without
hypsometric curves

In the previous section, we presented research focusing on the estimation of reservoir volumes
from power law and polynomial fitting linking water area and/or height to volume at a local or regjonal
scale in some selected places. Here, we present methodologies using height and surface area to retrieve
water volume without relying on hypsometric curves.

Messager et al 2016 proposed the first total water content estimation at a globalscale. They used
a model linking the surrounding topography of lakes and reservoirs to their estimated bathymetry. The
lakes are defined from static databases, like the SRTM water bodies (accessible here) or CanVec dataset
for Canada (accessible here). They applied a group-specific multiple regression using surface area
togetherwithterrainandlake shape variables as predictors. They created a bathymetry estimate for 1.42
million lakes and reservoirs worldwide. However, the resulting estimates of lake water volumes are static
in time. The validation on a short dataset cannot ensure the validity of the estimated lakes and reservoirs
depths estimations on the whole database, so these estimates are to be taken cautiously.

To apprehend temporal variation of water volume, Cooley et al. 2021 linked information from
static surface areas to water height variations from ICEsat-2. Yet, the use of Icesat2 with a low
repeatability involves some imprecisions. With ICEsat-2, they considered 227,386 water bodies with at
least two water level information from October 2018to July 2020. The water surface area in this study
was considered static, usingthe surface area correspondingto occurrences higherthan 75% inthe Global
Surface Water Occurrence dataset (Pekel et al. 2016) and eroded by 3 pixels. They also excluded rivers
from the analysis by flagging water bodies with an extent inferior to 5% compared to their bounding box
area.) For the LSC estimation we want to propose, it seems that long time series of water total volume
cannot be estimated from only two water height measurements with sufficient accuracy, and the surface
area variation may not be properly captured this way. Nevertheless, this study emphasizes that the
uncertainty due to the use of static water areas is minor for low-varying water bodies (at least).

Khazaei et al 2022 propose and enhancement of the HydroLAKES database, the main difference
being that this work adds bathymetric information and not only volumetric changes with time. The new
database is called GLOBathy. It uses a GIS-based framework to generate bathymetric maps based on the
waterbody maximum depth estimates and HydroLAKES geometric and geophysical attributes of the
waterbodies. The maximum depth estimates are validated at 1,503 waterbodies, making use of several
observed data sources. They also provide estimates for H-A-V relationships of the HydrolLAKES
waterbodies, driven from the bathymetric maps of the GLOBathy dataset. The H-A-V here are expressed
as power laws. However, even if the results show satisfactory estimations, for natural lakes the maximum
depth may not drive the behavior of the whole lake’s bathymetry and might impede a confident use of
the dataset. For this Lake Storage Change estimation activity, we will not consider this approach as we
want a robust methodology for both lakes and reservoirs, and that without any doubt of introducing an
error through a wrong bathymetry for the estimation of volume change.

Lakes_CCI+ - Phase 2 Lake Storage Change option
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Hou et al. 2022 also propose a geo-statistical method. They used high-resolution Landsat and
Sentinel-2 optical remote sensing and ICESat-2 laser altimetry in addition to radar altimetry from the
Topex/Poseidon, Jason-1,-2 and -3, and Sentinel-3 instruments. Past time series (1984-2020) of relative
or absolute water surface extents for more than 170,000 lakes globally with a surface area of at least 1
kmz2 were retrieved. Within these, they were able to develop an automated workflow for near real-time
global lake monitoring of morethan 27,000 lakes for 2020 onwards. Lake water volumes were estimated
by the bias-corrected predicted water depths multiplied by water extents. Ultimately, they produced
monthly water storage dynamics from 1984-2020 for 170,611 lakes globally. They also estimated
relative lake storage dynamics from 2018 onwards for 23,419 lakes using ICESat-2 and Landsat, and
from 1993 onwards for 148 lakes using G-REALM and Landsat. Their product comprises both relative
and absolute volume estimates for allHydoLAKES delineated lakes larger than 1 kmz2. They demonstrated
that the geo-statistical HydroLAKES bathymetry estimation approach produced slightly better results than
the GLOBathy method. Validation results showed an average R of 0.78 and a SMAPE of 52.5% between
estimated and reported volumes for 238 lakes in USA and Australia. This result may yet be tempered by
the difference in number of validation lakes and approaches between the data used in Messager et al.
2016 (12,150)and in Hou et al. 2022 (238). Therefore, for test lakes that are in the US of in Australia,
we will compare the results with this study.

= The use of geomorphological data along with remote sensing information for water height and
water surface areas seems to provide satisfactory estimates of water volume at a global scale,
which continue to improve. The approach by Hou et al., 2022 will be tested in US and Australian
lakes included in our initial selection of 20 lakes.

2.1.3 Estimation of LSC from a hypsometric curve

Previously, power laws or cylindrical approximations directly linked the water height H to the total
water content V from a power law. For more complex areas, this height’s variation has an impact on area
and hence volume, that can be expressed through a hypsometric curve. The definition and estimation of
this curve are explored in the next section 2.2.

Here, the objective is to list the main methodologies to derive the volume variation (AV) from the
related height or surface extent variation (respectively AH and AA). This is done using a power law as
mentioned previously, or by using the hypsometric curve between two known states.

H

By ——

Figure 3 - Volume variation between water height H1 and H2 and corresponding areas A1 and A2

The studies explored to this purpose showed five different ways of estimating the water volume
variation between two lake states. They are listed in Erreur! Source du renvoi introuvable. following the
nomenclature exposed in Figure 3.
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Table 2 - Formulas for water volume variation estimation between two states

— d _ pd
Power law AV = c(H; — HY)
, 1
Heron’s formula AV = §(A1+A2+1/A1*A2)*AH
1
Mean area AV = E(A1+A2)*AH
Basic volume AV = A*AH
(for unvarying lake areas) where A corresponds to the unvarying surface extent of a lake
H, Ay
Integration AV = f f(H)dH or f f(4)dA
Hy Aq

= These five approaches will be tested during the planned benchmarking exercise for established
hypsometric curves. The main criterion for evaluation during the planned exercise will be the
precision of the volume variation estimation depending on the approach chosen for water volume
variation estimation between two states. The establishment of the required hypsometric curve is
described in section 2.2.

2.2 Hypsometric curve estimation

2.2.1 Hypsometry from geomorphic processes

Hypsometry (from Greek Uyog, hupsos, “height” and yétpov, metron, “measure”) is the
measurement of land elevation and depth of features of the Earth’s surface relative to mean sea level).
In the original paper on this topic in 1952, Arthur Strahler proposed a curve containing three parameters
to fit different hypsometric relations:

d—x a 1
e

x d—a

where y is the relative height, x the relative area, and a, d and z the fitting parameters.

Differences in hypsometric curves arise from geomorphic processes that shape the landscape
(Strahler 1952; Ohmori 1993; Wilgoose & Hancock 1998; Harsha et al., 2020; Zhang et al., 2020). The
non-dimensional hypsometric curve provides a hydrologjst or a geomorphologist with a way to assess the
similarity of watersheds —and is one of several characteristics used for doing so. Applied to the lakes,
the hypsometry curve may induce the estimation of lake geometry and potential classification (Hakanson
1977). The geomorphic processes occurring within basins and landforms are analyzed with the
hypsometric curve of the basin which is the non-dimensional measure of the proportions of surface area
of a catchment or watershed above a given elevation (Willgoose and Hancock 1998). Hypsometric curves
assist in investigation of erosion stage of the basins and the lithology controlling the erosion in basin; and
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provide valuable information about the basin slope and geomorphology of the basin, which finds
applications in watershed treatment, basin planning and identification of rainwater harvesting structures
(Sarp et al. 2011).

1
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Figure 4 - Hypsometric curves classification (from Wilgoose & Hancock 1998)

2.2.2 Hypsometry from altimetry & surfaces

A hypsometric curve depicts the relationship between lake surface area and depth (or water level)
and to calculate total lake volume (or lake storage change).

Height

Area

Figure 5 - Principle of hypsometric curve (estimated in red) for lake studies

Magome et al. (2004, 2006) explored the feasibility of determining water storage variation in lakes
and reservoirs using 7 different methodologies. Using remote sensing data, from altimetry to DEM to
imaging satellites, they managedto provide water storage variations intwelve lakes of Africa. They notably
linked the area-height relation through a power law fitting, The volume variation from height and area
estimations (from Topex/Poseidon and MODIS respectively) are then integrated from the H-A curve. This
is, hidden but there, an approximation of the hypsometric curve linking height and area.

From various altimetry missions and LANDSAT images, estimation of the Nasser Lake volume
variations has been made in Abileah et al. 2011. By setting the hypsometric curve by fitting the water
height from altimetryand water surface extents from Landsat points overthe lake, the derivation of water
volume variation from the measured lowest water level has been made for the 1992-2011 period. Along
with this volume estimation, the 10m-height variation observed between 1998 and 2004 led to an
estimation of the bathymetry for the lake’s borders.
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Following the previous results on lake volume estimation exposed in Crétaux et al., 2011, and the
survey of reservoirs and lakes from remote sensing for the Syrdaria basin (Crétaux et al., 2015) a study
of the Tibetan Plateau (TP) lakes is done in Crétaux et al. (2016). They use a mix between water surface
extents from optical data and water height from satellite altimetry. The purpose is to link the impact of
climate change with the observed rise in water level (and hence volume) in the TP. They produced, for
each lake, a 2nd-order polynomial linking lake surface extent to height (the hypsometric curve). They then
derive the water volume variation using the Heron formula, and observe a rising trend in water volume
estimationforthe TP. The addition, comparedto Duan & Bastiaanssen 2013, isthat the lakes are smaller,
and that the hypsometric equation can be extrapolated. The relation between surface extent and volume
seems almost linear (slightly bent). The technique is applied and distributed online on the Hydroweb
website (see section 4.1), which estimates volumes around 100 lakes worldwide. Yet no solution is
proposed for smaller lakes located outside the altimetry track.
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Figure 6 - Hypsometry polynomial of Lake Ayakkum (within the hypsometry equation, height is expressed in meters and area
in km?2) (from Crétaux et al., 2016)

In Busker et al. 2019, time series of variation in lake and reservoir volume between 1984 and
2015 were analyzed for 137 lakes overallcontinents by combining the monthly JRC Global Surface Water
(GSW - Pekel et al. 2016) dataset from 1984 to 2015 and the satellite altimetry database DAHITI. Lake
areas and water levels were combined in a regression to derive the hypsometry relationship (dh/dA) for
all lakes. Nearly all lakes showed a linear regression, and 42 % of the lakes showed a strong linear
relationship with a R2> 0.8, an average R2of 0.91 and a standard deviation of 0.05. A similar
methodology is proposed in Schwatke et al. 2020, with an estimation of the hypsometric curve derived
from Strahler 1952 (see previous section 2.2.1) for the water surface extent/height point from altimetry
andoptical imagerywith the DAHITI database. Theyindeed propose to use a mmodified Strahler approach
to estimate the hypsometric curves for lakes and reservoirs as follows:

_ (xmin_x) (xmax_xip)z

- (xmin - xip). (xmax_ x)

- Yscale t Ymin

This derived Strahler equation relies on the lake depth assumption from Cael et al. 2017. This
means that they used the area-depth relationship from this study (derived from the Hurst coefficient) to
define rough limits for the minimum water level ymin. This methodology might introduce errors as the
estimation of the maximum depth remains tricky, leading to biases in the LSC estimations. This should
be explored though.
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Figure 7 - Original Strahler approach (left) and modified Strahler approach based on water levels and surface areas (right).
(from Schwatke et al. 2020).

Either surface area can be expressed as a function of height, or reversely. In the case of hypsometric
curve estimation, the surface areas as well as the heights correspond to independent observations with
biases and/or errors. Heights and surface extents might thus be considered as data pairs and must be
estimated at the same time for the estimation of the hypsometric curve to represent precisely one lake

state (i.e. coherent water height-area relationship). One solution could be a least squares approach with
a Gauss-Helmert compensation and RANSAC algorithms.

Inthe Lakes_CCl project, Lake Water Extent (LWE) is derived from the Lake Water Level ECV product
(LWL) with a hypsometric curve which is estimated by least square adjustment of LWE-LWL vectors, the
coefficients representing the linear relationships through polynomia of the first to 3rd order. Please refer
to the ATBD of LWE for more details in [R1].

= When the area-height couples are established from water height and surface extent estimations,
the hypsometric curve can be estimated from various approaches. In the planned benchmark
exercise, polynomials of first, second and third order will be compared with modified Strahler
approach for the observation area and height spans. The use of a Gauss-Helmert compensation
and RANSAC algorithm might also be explored.

2.3 Water level estimation

2.3.1 Altimetry water height estimation

Spatial altimetry allows the measurement of water level in rivers, lakes and flood plains. Since
the early 1990s, several altimetry satellites have been launched, as shown in Figure 8. Their main
objective is to measure ocean height, but their altimetry measurements can also be used to measure
continental water levels (inland seas, rivers, lakes, flooded areas, reservoirs). The products are an
important complement or even an alternative to in situ measurements, especially in regions where
ground-based networks are either non-existent or disappearing. Used in conjunction with other
hydrologjcal data and hydrological model outputs, these data make a valuable contribution to the study
of the water cycle and the quantification of water resources. In this study, we will use all water level data
available: HydroWEB including Lakes_cci LWL data, DAHITI and G-REALM.

Lakes_CCI+ - Phase 2 Lake Storage Change option

Doc Ref. CCl-Lakes2-0010-TN - 11/04/2023
Open/Public/Publico © 2019 CLS. All rights reserved. Proprietary and Confidential.




15/36

HY-2D
sentinel-6A
HY-2C
CFOSAT
ICESat-2
Sentinel-3B
HY-2B
Sentinel-34A
Jason-3
SARAL/AItIKa
HY-24
Cryosat-2
Jason-2
ICESat-1
Envisat
Jason-1
GFO
ERS-2
Topex/Poseidon
ERS-1
Geosat |
Seasat o |

Geos 3 I
Skylab- [
T T T T T
1980 1990 2000 2010 2020
Year

Figure 8 - Timeline for satellite altimeters. Dashed lines correspond to major orbit change. Blue lines correspond to altimeters
used for continental hydrology purposes.

2.3.1.1 HydroWEB

With the HydroWEB service (http://hydroweb.theia-land.fr - Crétaux et al., 2011) hosted on the
platform of the national French THEIA cluster and operated by CLS, LEGOS-CNES has been developing,
since 2003, a database of water level variations on lakes and rivers around the world based on satellte
altimetry. As of March 2023, 12,546 virtual stations are monitored on rivers and 442 on lakes, all
available in HydroWEB, in operational mode (real-time update) or in delayed mode. In addition, changes
in extent and volume are also measured for some of them. These observations allow the construction of
long time series of water levels over continental surface waters.

This database includes the Lakes_CCl water level time series.

2.3.1.2 DAHRITI

The Database for Hydrological Time Series of Inland Waters (DAHITI) was developed by
the Deutsches Geodatisches Forschungsinstitut der Technischen Universitat Minchen (DGFI-TUM) in
2013 to provide water level time series of inland waters Schwatke et al. (2015) . Today, DAHITI develops
a variety of hydrological information on lakes, reservoirs, rivers, and wetlands derived from satellite data,
i.e., from multi-mission satellite altimetry and optical remote sensing imagery. As for Hydroweb, all
products are available free of charge for the user community after a short registration process.

As of March 2023, DAHITI currently provides 10 103 water level time series distributed over all
continents, except Antarctica. In Africa (2082 time series), Asia (1737), Australia (46), Europe (680),
North America (1395), and South America (4024 ) water level time series are available. 8,637 of these
virtual stations follow rivers, 1,058 lakes and 387 reservoirs.
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Figure 9 - Statistics on the DAHITI database of virtual stations, by continent and by types (as of March 2023)

2.3.1.3 G-REALM

The U.S. Department of Agriculture's Foreign Agricultural Service (USDA-FAS), in co-operation with
the National Aeronautics and Space Administration, and the University of Maryland, are routinely
monitoring lake and reservoir height variations for many large lakes around the world. This program is
called Global Reservoir and Lake Monitoring (G-REALM) (Birkett & Beckley 2010). It utilizes
NASA/CNES/ESA/ISRO radar altimeter data over inland water bodies in an operational manner. The
surface elevation products are produced via a semi-automated process and placed on the G-REALM
website for USDA and public viewing.

As of November 2022, 530 lakes are monitored, and their water height time series can be viewed
and downloaded at https://ipad.fas.usda.gov/cropexplorer/global reservoir/.

2.3.2 Water elevation from Digital Elevation Model

Two methodologies are explained here. The first uses Digital Elevation Model (DEM) produced
with the lowest observed water level, representing the geomorphological topography of the watershed as
much asis possible from observation data. The second supposes that the lake bathymetry can be inferred
from its immediate surroundings. With those two ideas in mind, the use of DEM and their accuracy are
key entries to estimate a lake LSC time series. We hereby present some studies using these approaches
to determine watershed and lake volume from DEM.

In Amitrano et al., 2014, an innovative method is proposed to determine watershed volume
estimation from SAR data in the Sahel area. They use COSMO-Skymed high-resolution datato first create
a local DEM (using interferometry) when the water level is at its lowest (first methodology). Then, they
detect the watershed surface usinga De Gandifilter on multitemporal data, andthenapplying a threshold
determined manually using the local histogram of the SAR data. To improve the water surface estimation,
they apply a mode filter to the water body extracted made previously with the thresholding, followed by a
morphological filtering (Ronse & Serra, 2013). The shoreline is estimated applying a Roberts operator
(Shrivakshan and Chandrasekar, 2012). Once the shoreline is properly determined, the water volume
contained into the basin can be computed considering each pixel of the water mask as a water column
whose height h,,. is given by h,,. = h.— h, where h, is the elevation of the equipotential surface
identified by the basin contour derived from the SAR intensity maps, and h is the DEM height
corresponding to the considered pixel. Therefore, the water volume contained into the basin is given by
the summation of all the elementary contributions brought by the water columns.

Lakes_CCI+ - Phase 2 Lake Storage Change option

Doc Ref. CCl-Lakes2-0010-TN - 11/04/2023
Open/Public/Publico © 2019 CLS. All rights reserved. Proprietary and Confidential.




17/36

Asthe quality of the estimated volume depends highly onthe DEM, the key element in this process
is the quality of the DEM created or used to this purpose. This might be an issue in some cases, as many
DEMs have not been produced at a low water level and are provided at low resolution. If the methodology
developedin Amitrano et al. 2014 relies on SAR data, it canalso be usedforoptical data forthe shoreline
height estimation, as done in Vanthof and Kelly 2019 using the NDWI.

(a} (b}

(d)

Figure 10 - Shoreline of the Laaba basin for six different dates (from Amitrano et al. 2014)

If the former study represents a typical pipeline for water volume estimation from either SAR or
optical data, it needs an a priori knowledge of the waterless DEM (bathymetry). With freely accessible
SAR SLC data, only Sentinel-1 would be a proper candidate. Nevertheless, the baseline between two
acquisitions for similar orbits remains low for Sentinel-1, which helps monitor Earth’s surface movements,
but lead to poorly precise DEM estimation using interferometry. Such an approach cannot be easily
proposed for all lakes at a global scale and specifically in the framework of this study. This is due to the
use of high-resolution DEM (without water if possible) with private COSMO-Skymed data that are not in
our possession or freely accessible. However, the approach foraccessible DEM with lower resolution will
be tested, as it is promising for ungauged lakes and reservoirs.

A global approach has already been exposed in section 2.1.2 withthe work proposed in Messager
et al. 2016 (hydrolakes database + derived databases and products like GLOBathy). In this work they
related the surrounding topography of lakes and reservoirs to their estimated bathymetry. If the approach
might be suitable for reservoirs with an acceptable error margin, natural lakes might present “surprising’
results compared to their surroundings, with deep maximum depth in almost planar areas.

Using a multiple-year droughtin NorthEastern Brazil, Zhangetal. 2021 produced a “dry” DEM using
datafrom TanDEM-X acquired at thistime. Mixing the bathymetry information produced this way with high
resolution contours of the water bodies from RapidEye between 2009 and 2017, they managed to
produce the A-V-E curves, and thus to follow the water variation at a regional scale on 2140 reservoirs.
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= All available water level from altimetry will be considered in the planned benchmark exercise.
Concerning the use of DEM to map the water surface and retrieve water level, we will compare
the “classic” approach with altimetry on lakes where we have access to high-resolution DEM and
also explore the use of global and freely DEM (Copernicus, MERIT and Fabdem) on several lakes
to analyse the feasibility and understand the current potential limitations for global studies (the
Renaissance dam for instance).

2.4 Water surface extent estimation

Lake water surface extent estimations are used for 2 different purposes:
1 - To compute the hypsometric curve

2 - To estimate at a certain date the lake storage change from both its extent and an already
established hypsometric curve.

Forthe first purpose, a monthly water bodies database could be sufficient, but specific processing
is needed for the direct estimation of LSC from lake water extent if no pre-calculated dataset is used. In
the planned benchmarking phase, we will explore the impact of different water surface extent datasets
available on both the hypsometric curve estimation and its use for LSC estimation.

This question of water surface extent (WSE) is also considered in the baseline of the Lakes_cci
projectasit is a Lake ECV product. Wewon’t use the LWE dataset of the Lakes_cciproductasitis derived
from Lake Water Level (LWL) data and a hypsometric curve (see [R1] for details). We will use the LWL-
LWE vector data used to retrieve the hypsometric curve in the benchmark to assess the other
methodologies.

In addition to these data from the baseline, the following sub-sections describe 2 types of data,
dynamic data, and static data, that can be used for the benchmark and indicate also what should be
considered in the benchmark.

2.4.1 Dynamic approaches

2.4.1.1 Optical indices

In remote sensing, indices are part of the processing methods called multispectral
transformations. They consist in converting luminance measured at the satellite sensor into quantities
that have a meaning in the environment. Based on the multispectral character of satellite data, they can
describe the state of a phenomenon.
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Figure 11 - Band availability and lifespan of the main optical satellites. Landsat 7 experienced from 2003 a sensor incident
that deteriorated strongly the data acquisition (dashed line).

All indices, whether vegetation indices, soil indices, or water indices for our matter, are based on
an empirical approach based on experimental data. Through the years and the improvement of remote
sensing technologies, precision, and increasing number of available bands, many indices were proposed
to estimate water surface areas. The main indices dedicated to water detection are listed in Table 3.
Usually made to have values between -1 and 1, they lead to the production of rasters which highlight the
presence of water. You can observe on Erreur ! Source du renvoi introuvable. such indices produced on
the Bankim reservoir lake (Cameroon).

Table 3 - List of optical indices used for water detection.

Index Expression Reference
paper
TCwet TC et = 0.1509 * B 4+ 0.1973 * G + 0.3279 * R + 0.3406 * NIR Crist 1985
_ —0.7112 * SWIR1 — 0.4572 « SWIR?2
NDWI - Normalized NDWI = NIR — SWIR McFeeters 1996
Difference Water NIR + SWIR
Index
MNDWI - Modified T = G — SWIR Xu 2006
Normalized G + SWIR
DifferenceWater
AWEI — Automated AWE L, = 4+ (G — SWIR1) — (0.25 * NIR + 0.75 » SWIR2) Feyisa et al.
Water Extraction 2014
Index AWEIy =B + 2.5%G — 1.5« (NIR + SWIR1) — 0.25 * SWIR2
NWI - New Water T = B — (NIR + SWIR1 + SWIR2) Yang & Du
Index " B+ (NIR + SWIR1 + SWIR2) 2017

“ MBWI =3+ G — R— NIR — SWIR1 — SWIR2 Wang et al.
2018
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The use of indices derived from optical data do suffer from at least five different sources that do
not lead to an automatic and reliable use for water surface extent estimation:

- Obviously the first source of error is the correct detection of clouds. If not properly detected, as they
are made of water drops, they might be misclassified as water areas.

- Sometimesrelatedto the previous source of error, the shadowed areas with low luminance can bring
interpretationissues. From clouds or from mountains, shadows are particularly trickyto process, and
might have the strongest impact at high latitudes.

- Vegetation is also a not negligible source of misclassification. Either floating on the water surface
(macrophytes) or covering the shores from surrounding trees

- Otherfloating objects on water (boats, houses, fisheries mainly), as can be observed on Figure 12

- The confusion between water and snow cover may also induce over detections (Khalid et al. 2021)

A manual thresholding is often used to semi-automatically detect water surface. It can be supervised
from Landsat data on derived indices, generally the NDWI (Annor et al. 2009; Peng et al. 2006; Vanthof
& Kelly 2019), the MNDWI (Duan & Bastiaanssen 2013), or both (Crétaux et al. 2015).

Figure 12 - Lake Waduk Cirata (Indonesia), here depicted in false colours from Sentinel-2 with red areas corresponding to
vegetation. It presents floating vegetation, houses and fishery ponds on its surface, that make it difficult to precisely determine
the lake water surface.

All these error sources lead to some issues in water surface delineation from water indices. The
water areas are generally chosen for areas presenting values below or above a particular threshold, that
may change from one date to another. This threshold is manually set or chosen through different
approaches that are explored in the following sections.

= Evenif therearelimitations on the use of these numerous indices approaches, the impact on LSC
estimation has not been assessed and will be tested in the planned benchmark exercise.
Moreover, itis not easyto get in situ data of water extent and testingseveral methodologies might
improve the consistency of the work by giving the same trends.
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2.4.1.2 Dynamic thresholding applied to optical indices

Donchyts et al. 2016 describes a dynamic thresholding method from several image processing
methods: the Canny edge detection and the Otsu thresholding method applied to the MNDWI (see Figure
13Erreur! Source du renvoi introuvable.). The spectral properties of water change with region, basin, and
time. Often water is only a small part of the image, so thresholding to zero can introduce errors in area
detection. The histogram-based Otsu thresholding method (Otsu, 1979) works very well on bimodal
histograms; however, water sometimes represents only a small peak on the histogram. To circumvent
this problem, a Canny edge detection filter is first used. Created in 1986 by Canny, (Canny, 1986), it is
based on the following principle: the reduction of the image noise by Gaussian smoothing, an intensity
gradient calculation, then the calculation of the orientation of the contours. The non-maxima values are
then removed, and then the contours are thresholded by hysteresis. The contours are generally located
where there is an abrupt change in value, which is generally the case around the basins on the hydrology
indices. These contours are thickened by dilation and then the Otsu thresholding is applied on the index
values corresponding to the created buffer. This time, the histogram shall present a bimodal histogram,
which allows to recover a proper threshold valued. The Otsu method corresponds to a statistical method
based on histograms: it searches betweentwo classesforthe k value of the histo gramthat bestseparates
them according to the probabilities of belonging to these classes. The index is then thresholded with this
k value to obtain the water mask. Thus, this method has the advantage of adapting itself according to the
image, so we are free from the potential errors that could result from a thresholding to a fixed zero value.
It allows to approach the automation of the surface detection algorithm.

Compute Index Detect Edges Buffer Find Threshold Threshold
— =] - —
[ = Pareen = Pswir, = ; )
Pareen + Pswirs C = Canny(l,o,th) I.={llTec®S} = Otsu(l,) Water = {I|I < T}
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Figure 13 - Principle of Otsu Sequencing on contours (from Donchyts et al., 2016)

= This methodology will be interesting to test. However, as the codes work on the Google Earth
Engine with proprietary libraries, CLS has recoded and enhanced it to multiple indices.

2.4.1.3 Multi-index approaches

If former studies used manually supervised approaches using optical indices to determine water
surfaces, an increasing number of approaches propose semi or totally automatic methodologies to
estimate these surfaces.

Feng et al. 2016 developed an automated method for mapping inland surface water bodies by
combining coarse-resolution, global estimates of water cover with high-resolution estimates of surface
reflectance and topographic indices. The water detection methodology relies strongly on a decision tree
using NDWI and MNDW!I along with NDVI, with static thresholds. The method has been implemented with
open-source libraries to facilitate processing large amounts of Landsat images on high-performance
computing machines. With the support of the computing environment at the Global Land Cover Facility
(GLCF), the method has been applied to the roughly 9,000 Landsat scenes of the GLS 2000 data
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collection to produce a global, 30-m-resolution inland surface water body dataset (GIW) for circa-2000.
Though the results provide a satisfactory water body dataset, it is a static one produced on one dataset,
the GLS 2000 data collection (see Figure 14).

In Cordeiro et al. 2021, they propose an alternative detection method via unsupervised
classification. For this they compute for a particular image the MBWI, on which they run a hierarchical
clustering. Clusters are formed based on their Euclidean distance and linkage ("average linkage"). The
ideal number of clusters is chosen according to the variance ratio criterion. Finally, the cluster
corresponding to wateris selected by identification with the highest MBWI value. This method is repeated
several times to find the ideal number of groups. To reduce the processing time, a naive Bayes classifier
is used to choose the best model from a few pixels of the image. This algorithm has been enhanced by
CNES to become the SurfWater algorithm.

- e = - €
i

Figure 14 - Global water data derived from the 8,756 Landsat ETM+ images in the GLS2000 dataset (from Feng et al., 2016)

In Schwatke et al. 2019, they use Sentinel and Landsat data. The data are first pre-processed to
create cloud-free level 3 images. The images are then merged band by band. Five indices are used:
MNDWI, NWI, AWEInsh, AWEIsh and TCW. The histograms (cumulative and non-cumulative)are computed
to perform a thresholding, A first threshold at O on the MNDWI is arbitrarily fixed, we search via the
histograms of the other indices the associated pixel and value. This search is done in a window of data
defined by an interval, which allows to get rid of the noise of the histogram. Finally, the defined thresholds
are averaged and the images thresholded according to this value. The main advantage of this
methodology is the robustness through the multiplicity of indices, as well as the adaptation of this
threshold value. The MNDWI thresholded at a value of zero is only used for basic thresholding for the
other indices. Nevertheless, the pre-processing of the input data is consequent, and the histogram
processing is computationally time consuming. Furthermore, some parameters are not known, and some
processing steps are calculated on Google Earth Engine. These points prevent a proper evaluation of the
algorithm itself, but the time series produced on the test lakes will be explored.

= Forthe benchmark phase, the time series of lake’s surfaces following the approach of Schwatke
et al. (2019), Surfwater will be assessed, when available, with the other surface areas products
for the estimation of the hypsometric curve and its impact on Lake Storage Change estimation.
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2.4.2 Static data: the Global Surface Water dataset

2.4.2.1 GSW methodology to retrieve water extent

Using more than 30 years of 30m Landsat data, the JRC proposes the Global Surface Water (GSW)
dataset (Pekel et al. 2016). The entire archive of the Landsat 5 Thematic Mapper (TM), the Landsat 7
Enhanced Thematic Mapper-plus (ETM+) and the Landsat 8 Operational Land Imager (OLI) orthorectified,
top-of-atmosphere reflectance and brightness temperature images (L1T) acquired between 16 March
1984 and 10 October 2015 was used. Since 2016, they regularly produce monthly dataset from 1984
until now. GSW changed everything as a static dataset and is an absolute reference in terms of water
surface studies. For more details about the methodology to produce this dataset, please refer to Pekel et
al. 2016 or the explanation put in Appendix B -.

2.4.2.2 GSW dataset use for LSC estimation

Following the work initiated in Pekel et al. 2016 with the GSW dataset, Khandelwal et al 2022
created the RealSat database of reservoir and lake surface area variations. This new global dataset
contains the location and surface area variations of 681,137 lakes and reservoirs larger than 0.1 square
kilometres (and south of 50-degree N)from 1984 to 2015, to enable the study of the impact of human
actions and climate change on freshwater availability. They produced time series of surface areaand a
shapefile containing monthly shapes foreach lake. If the monthly scale pixel maps from the GSW dataset
were accurate and complete, it would be straightforward to produce surface extent shapes at each
timestep for individual lakes from these maps. However, these maps tend to sufferfrom large amounts
of missing data and labelling errors. To address this, they used the ORBIT approach to correct GSW labels
and impute missing labels using physics-based bathymetry constraints.

They extracted pixel-based water extent maps for each lake in the static lake polygon database
at a monthly scale from GSW. Specifically, for a given lake, they created a bounding box around its static
shape and extracted the monthly water extent maps. To avoid including other nearby lakes in the water
extent maps, they only consider the water pixels connected to the target lake at least five times in the
total time duration of 32 years. This step masks out pixels that may incorrectly connect the target lake
with other nearbylakes. Each pixel in these water extent maps s labelled as either land, water, or missing.
As mentioned earlier, these maps contain large amounts of missing labels and erroneous labels and thus
require further processing to improve their quality.

= In the benchmark phase, we will test the impact of the use of static data to generate the
hypsometric curve and to the LSC estimation.

2.5 Perspectives on Bathymetry estimation for lake volume estimation

Access to the lake volume estimation and not only its variation needs to have an idea of the
bathymetry. However, itisrarely available. The references hereaftersummarise the different possibilities.
Depending on the time available for this option, we could consider testing some approaches, especially
with ICESAT.

A line of research since the 1990s is the estimation of lake and costal bathymetry using satellite
optical data and/or altimetry. The huge advantage of getting precise bathymetry is that it directly leads
to A-H-V curves or estimates (as in Khazaei et al. 2022 or Zhang et al. 2021). Practically, bathymetry
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products are very scarce and expensive to produce, and thus their utilization is not generalized. Knowing
that, some studies try to derive the bathymetry information from remote sensing data.

Sandidge & Holyer 1998 use data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
in a neural network system to establish quantitative, empirical relationships between one of these
parameters, depth, and remotely sensed spectral radiance. They show that the ability of the neural
network to generalize, producing algorithms with some degree of universality among diverse coastal
environments is demonstrated. The result of the generalization analysis is of practical importance
because it indicates that the neuralnetwork may not require an extensive training set of water depth data
to be “tuned” for each location where depth retrievals are desired. However, the AVIRIS data are scarce
and not publicly shared in general.

In Mohamed & Nadaoka 2017, they compare in-situ bathymetry datasets with estimations from two
empirical approaches: Random Forest (RF) and Multi-Adaptive Regression Spline (MARS) in three
different areas with different turbidities. It appeared thatthese two methods (RF and MARS) outperform
the Lyzenga Generalyzed Linear model (GLM) and Neural Network model. The RF algorithm produces the
most accurate results and proved to be a preferable algorithm for bathymetry mapping in the shallow
water context. In Mohamed et al. 2017, they further the investigation by comparing the tree-fitting
algorithm using bagging (BAG), the ensemble regression tree-fitting algorithm of least squares boosting
(LSB) and support vector regression algorithm (SVR) with the NN and GLM models over the same three
sites. Compared with the echosounder data, BAG, LSB, and SVR results demonstrate higher accuracy
ranges from 0.04 to 0.35 m more than Lyzenga GLM. The BAG algorithm, producing the most accurate
results, proved to be the preferable algorithm for bathymetry calculation.

In Arsen et al. 2013, they use the laser ranging altimeter ICESat (Ice, Cloud, and land Elevation
Satellite) during lake Poopé (Bolivia) lowest stages to measure vertical heights with high precision over
dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery.
Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and
interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate
Resolution Imaging Spectroradiometer (MODIS) surfaces from 2000to 2012 combined with bathymetry
gives water levels and storage evolution every 8 days. With the ICESat-2 satellite (since 2018) which has
lowered its footprint diameterto 13m and Sentinel 1 and 2 data, there are good perspectives to apply
this methodforlarge and smaller lakes. Asimilar approach onthe Sobradino reservoir combining Landsat
imagery with water height information derived from IceSAT-2 to estimate the “observed” bathymetry and
derive LSC estimation is proposed in Bacalhau et al., 2022.

Preparing the launch of the ICESat-2 mission, Liet al 2019 studied the use of an ICESat-2 airbome
prototype called MABEL (Multiple Altimeter Beam Experimental Lidar) and Landsat historical data to
produce bathymetry information on lake Mead. This preliminary work was followed by the work exposed
in Li et al 2020, where they used both altimetry data (ICESat, G-REALM, Hydroweb) with water surfaces
from the GSW and GRSAD datasets. They then produced bathymetry over 347 reservoirs worldwide. For
unobserved area, they projected the bathymetry with relatively large uncertainties and errors. Once again
working on lake Mead, Li et al. 2021 determine A-V-E curve using information from both GSW and
TanDEM-X to obtain the visible bathymetry. They managed to add 3m of bathymetry depth using
information on transitional water extracted from TanDEM-X data.

A similar approach proposed by Armon et al. 2020 enhanced these results over shallow lakes Eyre
(Australia), EI-Mellah (Algeria) and Coipasa (Bolivia), using ICESat-2 and the water occurrence from the
GSW dataset. The methodology can be applied to a large portion of the shallow lakes around the world,
enabling the mapping of inundated lakes, small lakes, and large and complex lake systems.

Finally, CLS and CNES are developing a deep learning approach to retrieve unknown bathymetry from
already existing DEM. It relies on a virtual lake database. This database is formed from existing DEM
(MERIT, CopernicusDEM) following the Hydrobasin delineations. After training the algorithm, from a lake-
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filled” DEM the algorithm estimates a lake-“empty” bathymetry. It is currently at a R&D stage, but first
results are promising, and the algorithm could be tested on some lakes/reservoirs with known
bathymetry.
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3 User requirements

The majority of Earth’s accessible fresh surface water is stored in more than 100 million lakes and
reservoirs, which serve asvital resources foran exhaustive list of critical ecosystemfunctionsand human
and animal habitats. Only 0.4% of all the freshwater available on Earth is at the surface level (Meybeck
et al.,, 1995), which makes it a scarce resource essential to life, under a strong human-induced stress.

Beyond their coupled effects on weatherand climate, the role of lakes in global hydrological and
biogeochemical cycles is closely linked to their geometric characteristics of surface area, depth, volume
of stored water and shoreline length (Winslow et al., 2014). Spatially explicit knowledge of all these
characteristics is crucial for understanding and modelling a wide variety of Earth system processes and
their interactions with the environment (water budgets, carbon or methane exchange rates, sediment
trapping, heat fluxes, the cycle of pollutants and nutrients, as well as associated ecological processes
such as lake productivity or food chain dynamics).

The annex to GCOS-200 (as expressed in ESA document ESA-EOP-SC-AMT-2021-26) defines lake
storage change and its fluctuations as a key issue: “The volume of the lake water body is an integrator
variable reflecting both atmospheric (precipitation, evaporation-energy) and hydrological (surface-water
recharge, discharge and groundwater) conditions.” The GCOS-240 status report indicates also “Water
level, water extent and storage changes, surface water temperature (LSWT), ice phenology (ice-on/ice-off
dates and ice duration) and water reflectance (water colour) are measured as part of an ESA Climate
Change Initiative (CCl) project, Copernicus and NOAA.. They do mention for instance that information on
changesin lake level and area is required on a monthly basis for climate assessment purposes. Theyalso
remind that approximately 95% of the volume of water held globally in approximately 4 000 000 lakes is
contained in the 80 largest lakes. The dimensions in terms of frequency, resolution and required
uncertainty and stability are not yet given for LSC.

The requirements for ECV datasets are expressed in terms of five criteria:
i) spatial resolution - horizontal and vertical (if needed).
ii) temporal resolution (or frequency) - the frequency of observations e.g., hourly, daily or annual.
iii) measurement uncertainty - the parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to the measurand.
iv) stability - the change in bias over time and quoted per decade.
v) timeliness - the time expectation for accessibility and availability of data.

In the latest Lakes_cci User Requirement Document (URD) [R2], a third user survey is presented. This
addressed climate scientists, lake scientists and the wider scientific and expert user community
interested in observing lakes. This survey collected feedback and requirements to align the project with
user needs in Phase 2 of the project. It focused on the use of the dataset produced in Phase I. One
question was “Do you need other thematic variables to be developed? (e.g., coefficient of extinction [Kd],
Coloured Dissolved Organic Matter [CDOM], Forel-Ule colour index, Ice thickness, Lake volume change?)”

The 13 responses are reported in the following:

e Kd or Secchi depth maps would be very useful, as well as Lake volume change.
Ice thickness, snow cover and Kd.
Yes. CDOM would be very helpful.
coefficient of extinction [Kd], ice thickness.
All of the above.
CDOM, Ice thickness, Lake volume change, possible other parameters on changes in lake
morphology and biochemistry, e.g., ash and microplastics concentrations, greenhouse gases,
especially methane.
« Information on water uses, withdrawals.
e Extinction coefficient and ice thickness (possibly snow thick ness) would be very useful for
modelling purposes. Then lake volume change is also of interest for hydrology and the water
cycle.
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o Kd.

e Yes, that would be very interesting, and it would probably enlarge the scope of use of the
dataset.

e Dominant wavelength from chromaticity.

e CDOM would be very useful for our purposes.

o Coefficient of extinction [Kd], Ice thickness.

This shows that lake volume change is of interest for climate related hydrology and water cycle studies.
The Centre National de Recherches Météorologiques (CNRM) has also shown such interest. They have a
module for estimating the variation of some lake’s volume in the frame of global modelling (FLAKE). They
mentioned the difficulty to estimate the uncertainties in such variation estimations, but also mentioned
that the accuracy of the lake’s water volume was more important than the temporal coverin terms of
modelling accuracy. This point was also shared with the JRC needs in terms of lake’s volume variation.
Some researchersalso mentioned thatforregional studies, data on as much lakes as possible is needed
for an integrated approach, one lake alone being sometimes not enough to observe the climate change
impact over time. Others have shown interestin being able to monitor such volume variations in remote
areas.

In the end, the objective we have for the LSC product are as follows:

Spatial resolution As many CCl lakes as possible

Temporal resolution | At least once per month

Uncertainty <10% of total volume
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4 Benchmark activities

The state of the art presented in this document showed many different methodologies to reach the
purpose of estimating lake water content or variation. Among all the methodologies exposed, some will
be tested in separate benchmarks to evaluate and choose the best techniques to be used for LSC
estimation, both in terms of precision and efficiency. The benchmarks will focus on three main topics:

- Water height estimation from altimetry and from water surface area contours on DEM.
- Impact of water surface area estimation on hypsometric curve generation.

- Hypsometric curve estimation.

- Estimation of water volume variation from hypsometric curves.

Water height:

All available water level from altimetry will be considered in the benchmark. Concerning the use of DEM
to map the water surface and retrieve water level, we will compare the classic approach with altimetry on
lakes where we have access to the high-resolution DEM and explore the use of global and freely DEM
(Copernicus, MERIT and Fabdem) on several lakes to analyse the feasibility and understand the current
potential limitations for global studies (the Renaissance dam for instance).

Water surface areas impact on hypsometric curve:

It has been shown that the lake/reservoir surface is an unavoidable parameter when it comes to
estimating the LSC between two dates. That is why different approaches will be explored, with a focus on
their impact on the hypsometry curve and the derived LSC estimation. They will be tested on
corresponding test lakes with as much validation data as possible. Global monthly static (GSW) and
dynamic water surfaces (from the ESA CCI Phase 1&2 LWE, CNES’s Surfwater algorithm, Donchyts-CLS
adapted algorithm and lake surface’s time series from DAHITI to enhance the consistency and confidence
in the results) will be evaluated.

Hypsometry curve estimation:

When the area-height couples are established from water height and surface estimations, the
hypsometric curve can be estimated from various approaches. In the benchmark, power laws,
polynomials of first, second and third order will be compared for the observation area and height spans.
The use of Gauss-Helmert and RANSAC algorithms will also be explored.

Volume variation estimation:

When the hypsometric curve is needed for the estimation of volume variations between two states, five
different methodologies will be explored to evaluate the LSC variation. These are power laws, Heron's
formula, the use of the mean area between the two states with the height difference, the basic volume
variation (for non or low-varying surfaces), and finally the integration. We will also explore direct
relationship of volume with surface and/or height and direct estimation of LSC.
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5 Study sites

For test, validation and production purposes, a set of twenty lakes has been set up following
various criteria. From the 63 candidates, 20 study lakes were selected around the world as can be
observed on Figure 15. The selection criteria are as follows:

- All considered lakes had to be covered by altimetry measurements.

- All pedo-climatic areas had to be covered (i.e tropical, dry, temperate, continental, and polar).

- They had to show very low to very large area variations in time.

- Their maximum size had to show the largest panel possible.

- In-situdata hadtoexist to validate the LSC product; either area-height or volume-height relationships,
bathymetry data (or empty DEM), height or surface or volume time series, or they had to be
periodically empty.

Either published in scientific journals, shared publicly or privately, the validation datasets found
on the final study lakes will help deeply in the pipeline setting, validation, and of course for the analysis
of the LSC time series consistency (see Figure 16).

i

Richland-Cham

Figure 15 - Location of the twenty study lakes around the world
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Appendix B - GSW methodology to retrieve water

extent

Using more than 30 years of 30m Landsat data, the JRC proposes the Global Surface Water (GSW)
dataset (Pekel et al. 2016). The entire archive of the Landsat 5 Thematic Mapper (TM), the Landsat 7
Enhanced Thematic Mapper-plus (ETM+) and the Landsat 8 Operational Land Imager (OLI) orthorectified,
top-of-atmosphere reflectance and brightness temperature images (L1T)31 acquired between 16 March
1984 and 10 October 2015 was used. Since 2016, they regularly produce monthly dataset from 1984
until now.

Techniquesfor big data exploration and information extractionless commonly used by the remote
sensing community were exploited, namely expert systems, visual analytics, and evidential reasoning,
Expert systems provide flexibility (to deal with the range of conditions encountered). Visual analytics
combine human cognitive and perceptual abilities with the storage and processing capacities of cloud
computing platforms. Evidential reasoning deals with problems related to both uncertainties and quality
issues in the data set. Expert systems are non-parametric classifiers that can account for uncertainty in
data, incorporate image interpretation expertise into the classification process, and can be used with
multiple data sources. The expert system was developed to assign each pixel to one of three target
classes, either water, land or non-valid observations (snow, ice, cloud or sensor-related issues). The
inference engine of the system was a procedural sequential decision tree, which used both the
multispectral and multitemporal attributes of the Landsat archive as well as ancillary data layers. Within
theinference engine, expert knowledge was represented inthe form of rules having the form: IF condition
THEN inference. The condition contains equations describing the cluster hulls in a defined multispectral
feature-space and can also be a combination of logical statements in which several components are
linked through logical operators. The chaining of IF-THEN rules forms the problem-solving model that
organizes and controls the steps and data used in the classification (see Figure 17). Tracing the line of
reasoning used by the inference engine during the development phase meant that the reason for the
class choice associated with each pixel could be retrieved, which in turn allowed the reasons behind
classification challenges to be identified. Solutions to identified failings could then be developed using
evidential reasoning and addressed in subsequent iterations so that the overall performance of the
classifier was progressively improved. When the performance of the expert system could no longer be
noticeably improved, it was applied to the entire Landsat L1T data set in a single run, and the output of
this classification was then validated.

No data Not water

No data removal

Unequivocal o Unequlvmal
water detection, waiwl requency

Building cast
shadaw remova

Figure 17 - Diagram of the expert system classifier (from Pekel et al., 2016)
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The equations describing the cluster hulls used in the expert system were established through
visual analytics. The first step was to build a spectral library capturing the spectral behavior of the three
target classes across as wide a range of conditions as possible. 64,254 samples obtained through visual
interpretation of 9,149 Landsat scenes recorded spectral variability of the target classes. Records held
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in the library comprised spectral values from all bands. These records were enriched by deriving the
Normalized Difference Vegetation Index and HueSaturation-Value (HSV) colour-space transformations
for the following band combinations: shortwave infrared (SWIR2); near-infrared (NIR); red; and NIR/
green/blue using a standard transformation. The HSV colour model is well adapted for image analysis
because the chromaticity (H and S) and the overall brightness (V) components are decoupled. This is
highly desirable because changes in observation conditions first affect the V. component and then the S
component, while H remains relatively stable (except whenthe fundamental nature of the target changes,
such as when land becomes water). Consequently, this property promotes temporal stability in the
measurements and HSV-based classifications have been successfully used for near-real-time surface
water detection at continental scales.

Ultimately, six products are proposed:

- Water occurrence

- Water occurrences change intensity
- Water seasonality

- Water recurrence

- Water transitions

- Water maximum water extent

Along with these six static products, monthly water body datasets are produced and retrievable at a
nearly global scale, covering the 1984-2021 timespan (as of November 2022). They can be accessed
through https://global-surface-water.appspot.com/download.

Now considered as unavoidable, the GSW dataset is nowadays used in numerous studies related to
hydrology in general, and LSC estimation in particular (for instance Armon et al., 2020; Li et al.
2020;2021; Cooley et al., 2021; Hou et al., 2022).

‘n—.»

Figure 18 - Example of water occurrence from the GSW Occurrence dataset, here in Cambodia.
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