

Examples of uncertainty characterisation in atmospheric retrievals

Adam Povey

Atmospheric, Oceanic, and Planetary Physics - University of Oxford

Acknowledgements to Don Grainger (Oxford), Caroline Poulsen, Gareth Thomas (RAL), Thomas Holzer-Popp (DLR), Leigh Munchak, Ralph Kahn (Goddard)

Outline

- Representing uncertainty
- Sources of uncertainty
- Estimation of uncertainty
- Discussion

- Uncertainty characterizes the range of values that could be reasonably attributed to a measured quantity. This encapsulates:
 - The accuracy with which a measurement can physically be made;
 - Approximations in the model of the system;
 - The conditions under which the system is observed;
 - Uncertainties in auxiliary information used.

- (My) users generally expect uncertainty to be represented by a single number.
 - Implicitly the standard deviation of a normal distribution about the quoted value.
 - Is a normal distribution appropriate?
 - Is this a sensible means to communicate biases?

- Quality flags are also provided with many products.
 - Describe qualitative difficulties/failures in the retrieval process.
 - e.g. failure to converge, conditions in which the algorithm is known to fail, missing data
 - Can be highly detailed but generally simplified to a few values before publishing.
 - Not strictly an 'uncertainty' but can efficiently convey useful information about the data.

 Data filtering is a common application of quality flags and uncertainty estimates.

Cloud optical thickness retrieved by ORAC from a MODIS scene over Papa New Guinea on 20 June 2006. Note the differing colour bars. *Left*: All pixels.

Right: Only pixels which passed all quality flags.

Random

- Measurement noise
- Propagated noise from auxiliary information
- Systematic
 - Approximations in the forward model
 - Circumstances not represented in the forward model
- Some mixture of the two
 - Instrument calibration
 - Look-up table interpolation

- Representivity
 - Most important for Level 3 products.
 - Precisely how to propagate uncertainties into Level 3 is an open question for many products.
 - Spatial and temporal correlations of errors mostly neglected (as poorly constrained).
 - Highly dependent on variable considered and the current state as natural variability can be relatively more important.
 - Relevant to intercomparision of ground and satellitebased observations.
 - Differing spatial/temporal coverage.

- Most satellite remote sensing retrievals require some manner of cloud filtering.
 - Cloud contamination will clearly introduce error into a retrieval.
 - Not generally clear if this is a random or systematic.
 - Frequently assumed (and described) to be a bias.
 - Excessive cloud clearing will clearly bias an averaged product against high radiance situations.
 - If one could quantify what was being unduly cleared, it wouldn't have been cleared in the first place.
 - Radiative impacts known to extend well beyond cloud edges.
- Very few retrievals contain any explicit estimation of these uncertainties.

Estimation of uncertainty

- Jacobian error propagation
 - Basically the standard propagation of uncertainties taught to undergraduates.
 - Provides an analytic, numeric estimate of uncertainty.
 - Assumes errors are Gaussian.
 - Only appropriate for errors which are well characterised. Cannot sensibly account for "known unknowns".
- Monte Carlo estimation
 - Brute force technique.

Estimation of uncertainty

- Jacobian error propagation
 - Basically the standard propagation of uncertainties taught to undergraduates.
 - Provides an analytic, numeric estimate of uncertainty.

Estimation of uncertainties

- "Expected error" envelopes
 - Prevalent in aerosol optical depth retrievals.
 - Compare retrieval to the 'true value'. The envelope is defined to enclose 66% of the observed errors.
 - Can be stratified by conditions, assumptions, etc.
 - Does not provide pixel-level uncertainties.
 - Disconnects local and global sources of uncertainty, complicating the merging of data sets.
 - Compatible with GCOS.

Levy et al., AMT 6, p.2989 (2013). doi: 10.5194/amt-6-2989-2013

Estimation of uncertainties

Classification

- Products such as land surface and aerosol typing return a classification rather than a number.
- Frequent use of Bayesian probabilities.

November 19th, 2014

Uncertainty characterisation in atmospheric retrievals

Estimation of uncertainties

Classification

- Products such as land surface and aerosol typing return a classification rather than a number.
- Frequent use of Bayesian probabilities.
- Here, uncertainty describes the confidence in the identification.
- Important to include a classification for "We don't know".
- When classification impacts later analysis (as for aerosol type), it is not yet agreed how to evaluate uncertainties.

Communicating uncertainty

- A user's requirements are practically unique.
 - Uncertainty estimates are required for data assimilation but can be a nuisance for multi-decadal analysis.
 - Estimates of both random and systematic uncertainties are necessary.
- Exercises such as this meeting are important in allowing data producers to cater their outputs to a wide range of users.
- Though dissatisfying, it is not practical wrong to overestimate uncertainty.

Communicating uncertainty

- The basis with which you describe the system will fundamentally limit what you can and cannot say about that system.
- Ideally, uncertainty assess the likely distribution of error in a measurement from only the information used to calculate it. For poorly constrained problems, validation contributes to the estimation.
 - Where no validation available, best understanding prevails.
- Regardless, there remain "unknown unknowns"
 - Effects too poorly understood to quantify.
 - Variables without validation data.

Looking forward

- There are significant uncertainties in the uncertainty of many retrievals. None the less, an estimate of uncertainty is required by users and for validation.
- Need to start with what can currently be achieved and iterate with users until we have usable uncertainty products.
 - Concentrate on how best to communicate where the algorithm is known to fail.
- Must improve reputation of remote sensing data among users. Providing validated pixel-level uncertainties and continuing the conversation about how to improve them should help.

Questions or comments?

Questions or comments?