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Definition and first descriptions of wave setup

v’ Wave setup corresponds to the rise in mean water level that accompanies wave
dissipation in the nearshore and was first reported by Saville (1961).

v' The first physical explanation is due to Longuet-Higgins and Stewart (1964), who
introduced the concept of radiation stress:
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v/ Wave setup and setdown was then
investigated in the Lab, as for instance in / e

the pioneer study of Bowen et al. (1969). Zﬁ*‘}y / .
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Why wave setup matters

v' Under storm waves, wave setup can reach or exceed 1 m (e.g. Lerma et al. 2017;
Guérin et al., 2018) and therefore can have a key contribution to storm surges and

subsequent flooding.

v  In the surfzone, the local imbalance
between the depth-uniform barotropic
pressure gradient and depth varying wave
forces and Stokes drift drives a bed return
flow, which contributes to coastal erosion.
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v In tidal inlets, wave setup drives a lateral barotropic pressure gradient, which forces
strong flows towards the lagoon (Bertin et al., CSR2009).
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The “setup enigma”

v’ Based on comprehensive field experiments, Raubenheimer et al. (JGR2001) and
Apotsos et al. (JGR2007) reported a severe underestimation of wave setup along the

shoreline when using the model of LHS64:
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The “setup enigma”

v The study of Apotsos et al. (2007) fostered some research on wave setup, namely using
3D models capable to simulate the wave driven circulation (e.g. Bennis et al., 2014):
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» Parameterizations for mixing and bottom stress can impact wave setup by O(10%)

v" However, storm surge studies keep using LHS64 with default breaking parameterizations,
which questions the validity of wave setup predictions (e.g. Dietrich et al., 2010):
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» Are these values also underestimated by a factor of two?



Il - The impact of short wave
breaking parameterization




Parameterization of wave breaking in spectral models

. The Wave Action Equation
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« The depth-induced breaking source term S

Fraction of breaking waves. Profusely studied, Energy dissipation rate of a breaker.
numerous formulations and parameterizations New analytical parameterization of the breaking
coefficient proposed by Pezerat et al. (OM2021)




Improved predictions of storm waves in the shoreface
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What implications on the wave setup ?

An early wave energy dissipation in intermediate depth should result in weaker
wave forces, yielding an undererstimation of wave setup near the shoreline
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Il - Impacts of the wave-driven
circulation on wave setup
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The field campaign of February 2017 (Guérin et al., OM2018)
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» Wave setup 0(0.1*H, , ..,) but estimated with errors 0(0.05-0.1 m)



The modelling system SCHISM

Ax ='20-40 _rﬁ{\

The coupling through a vortex force formalism (e.g. Bennis et al., 2012)
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Wave setup predictions (Guérin et al., OM2018)
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» Improvements with the 3D model are very limited: bottom slope too mild?



Extention of this study to idealized beaches
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v’ Under steady state, the wave setup is balanced by the following depth-
integrated terms in the momentum equation along x:
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Extention of this study to idealized beaches
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» For a given Hs, wave setup increases with the beach slope due to a more important
contribution of the depth-varying wave-induced circulation.

» For a slope of 0.1, wave setup is increased by 30 %: could this explain the « setup enigma »?

» We are verifying this hypothesis using the data of Apotsos (2007) and a more complete model.



lll - Wave setup in coastal lagoons
and estuaries




The contribution of wave setup to the storm surge associated
with Klaus in the Bay of Biscay (Lavaud et al., 0M2020)

The extra-tropical storm Klaus made landfall in the southern part of the Bay of Biscay on the

24/01/2009 (min. atm. pressure of 965 hPa).
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The contribution of wave setup to the storm surge associated
with Klaus in the Bay of Biscay (Lavaud et al., 0M2020)

- The extra-tropical storm Klaus made landfall in the southern part of the Bay of Biscay on the
24/01/2009 (min. atm. pressure of 965 hPa).
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The contribution of short-wave breaking to storm surges

Modelling system SCHISM:

Fully-coupled (wave-current) 3D simulations (SCHISM-WWM)

Vortex force formalism

Spatial resolution down to 35 m in the surf zones of the studied areas

Storm surge predictions:
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# Storm surge predictions strongly improved when accounted for wave forces.



The contribution of short-wave breaking to storm surges

Storm surge predictions:
Adur Estuary
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Storm wave breaking can greatly contribute to storm surge, even in areas sheltered from this

process.



Surge associated with the 1941 storm in the Tagus Estuary
(Fortunato et al., CSR 2017)
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» Dynamical hindcast of the storm using WRF forced with the 20CR reanalysis (Compo et al., 2011)
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Surge associated with the 1941 storm in the Tagus Estuary
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» Inside the Tagus Estuary, wave setup locally dominates the total surge (~*0.5 m/ 1.0 m)

» Wave setup locally grows inside the Tagus Estuary by up to 20 % compared to the entrance.



Surge associated with the 1941 storm in the Tagus Estuary
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» All these findings are based on the model, we need observations under storm waves!



IV — Conclusions and

works in progress
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along the shoreline using LHS64, we propose that this problem is [§
mostly due to: (1) inadequate wave breaking parameterizations and
(2) neglecting the wave-driven circulation.

We are verifying this hypothesis using the data of Apotsos (Duck

Beach) with a more complete model, including a representation of the
roller.

Wave setup can extend outside surfzones and develop at the scale of
large estuaries and lagoons.




Thank you for your attention!
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